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Preface

The 10th International Tbilisi Symposium on Logic, Language, and Computation was
held in Gudauri, Georgia, during September 23–27, 2013. The Symposium was
organized by the Centre for Language, Logic, and Speech at the Tbilisi State Uni-
versity, the Georgian Academy of Sciences and the Institute for Logic, Language, and
Computation (ILLC) of the University of Amsterdam. The conference series is centered
around the interaction between logic, language, and computation. The contributions
represent these three fields, and the symposia aim to foster interaction between them.
The scientific program consisted of tutorials, invited and contributed talks, and two
special sessions.

It is also worth mentioning that alongside their scientific merit, the Tbilisi symposia
are renowned for their social atmosphere and heartwarming welcome by the Georgian
hosts. The tenth symposium was no exception and we would like to extend our heartfelt
thanks to the organizers, reviewers, and presenters who worked to bring it about.

The symposium offered three tutorials. Samson Abramsky gave a tutorial on con-
textual semantics, demonstrating how tools from computer science shed light on
phenomena at the heart of quantum mechanics, namely non-locality, contextuality, and
entanglement. The tutorial on aspect was given by Daniel Altshuler and he focused
on the formal semantics of aspectual meaning from a crosslinguistic perspective.
Rosalie Iemhoff gave tutorial on admissible rules, i.e., inference steps not explicitly
mentioned in the axiomatization of theories, focusing on their nontrivial nature in
intuitionistic and modal logic or Heyting arithmetic.

There were six invited talks given by Balder ten Cate, Agata Ciabattoni, Thomas
Colcombet, Galit W. Sassoon, Alexandra Silva, and Sergei Tatevosov. Two workshops
were organized at the event, the first on aspect, organized by Daniel Altshuler,
Sergei Tatevosov, and Daniel Hole and the second on algebraic proof theory, organized
by Agata Ciabattoni and Rosalie Iemhoff. Each included their own invited speakers:
Roumyana Pancheva and Hans Kamp spoke about aspect and Matthias Baaz,
Alessio Guglielmi, and Kazushige Terui gave talks on algebraic proof theory. This
volume contains a selection of papers from both invited and contributed talks presented
at the symposium. In what follows, we will briefly introduce the selected papers in
logic, language, and computation. As many of the papers were interdisciplinary, they
are presented in alphabetical order.

Martin Aher seeks to unravel puzzles involving deontic conflicts or, in other words,
situations where each possible state of affairs lies contrary to some rule or another. The
proposal is realized in a specific iteration of inquisitive semantics, called MadRis,
which specifies both support and rejection conditions. The paper focuses on the
Dr. Procrastinate puzzle where the desiderata are obtained by assigning each rule a
unique violation-proposition, such that in a deontic conflict, no logical contradiction
between rules occurs.



Philippe Balbiani and Çiğdem Gencer investigate admissibility and unifiability
problems for contact logics. They prove that admissibility of weak rules is decidable for
balanced and finitely axiomatized logics, that the unifiability problem for weak for-
mulae is in NP for every logic and NP-complete for consistent logics, and that the
unifiability problem for weak formulae can be reduced to theoremhood for consistent
logics containing the formula C(1,1).

Kata Balogh’s paper extends her prior work on focus that combines feature-based
lexicalized tree-adjoining grammar (F-LTAG) and inquisitive semantics to account for
the question-answer congruence of various narrow focus constructions. In the second
part of the paper, Balogh demonstrates how to provide a uniform treatment of focusing
and quantifier scope.

Marina Beridze, Liana Lortkipanidze, and David Nadaraia provide a detailed report
on the construction of a Georgian dialect corpus. In the first part they discuss the
representativeness in the corpus and problems related to morphological annotation.
After that they give a detailed description of the database storing the computational
lexicon.

The paper by Nick Bezhanishvili, Dion Coumans, Sam van Gool, and Dick de
Jongh investigates the conjunction–implication fragment of intuitionistic propositional
logic. Using duality for finite distributive lattices, they give a description of finitely
generated universal models of this fragment, and up-sets of Kripke models definable by
conjunction–implication formulas.

Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia, and Daniel Weller study
sequent calculi for first-order logic with induction rules, which often do not enjoy cut
elimination. They present an alternative formalism for uniform description of infinite
sequences of proofs replacing induction rules, and develop a cut-elimination method in
this formalism, based on the CERES method.

Pushing forward the inquisitive semantics enterprise, Jeroen Groenendijk and Floris
Roelofsen add a suppositional content type to the previously covered inquisitive and
informative content types. The paper focuses on the case where rejecting the antecedent
of a conditional sentences neither supports nor rejects it, but suppositionally dismisses
it, providing a formal semantic account of this aspect of information exchange.

Paula Henk offers a new perspective on the arithmetical completeness of GL as the
provability logic of Peano arithmetic. Her paper introduces several arithmetical
accessibility relations that turn the collection of models of PA into a Kripke model, and
shows that every finite GL-model is bisimilar to such an arithmetical Kripke model
using a variant of Solovay’s completeness proof.

Dick de Jongh and Zhiguang Zhao investigate the positive fragment of intuitionistic
and minimal propositional and predicate logic. The authors first provide a character-
ization of the positive fragments of IPC/IQC in terms of so-called top models. Fur-
thermore, they prove a uniform interpolation theorem for the positive fragments of IPC
and MPC. Finally, they study conservative extensions of the positive fragment of IPC
and IQC starting from the well-known result that Jankov’s Logic KC is conservative
over the positive fragment of IPC.

The joint paper by Gary Mar, Yuliya Manyakina, and Amanda Caffary lies at the
intersection of logic and linguistics. They consider the similarities and differences
between ‘unless’ and ‘until’ with the aim to propose a unified compositional account.
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This is standardly considered unachievable in linguistics, and the authors seek to
uncover the underlying source of the problems in Willard van Orman Quine’s classic
treatment of ‘unless’.

Ralf Naumann and Wiebke Petersen describe a formalization of (a variant of)
Löbner-Barsalou frame theory (LBFT) in terms of a dynamic frame theory that is based
on both Dependence Logic and Dynamic Epistemic Logic. The focus of their work lies
in particular on the interpretation of numerals and scalar quantifiers.

Alfred Ortmann presents evidence from Germanic and Mayan languages, which
underpins the fourfold typology of nominal concepts derived from the binary features
of uniqueness and relationality. His main findings are that recategorizations tend to be
marked morphologically and that only phonologically ‘strong’ forms of definite articles
are reliably semantically active. Overall, morphological marking in split article systems
reflects conceptual markedness.

Katsuhiko Sano and Minghui Ma investigate Visser’s basic propositional logic BPL.
They provide an embedding of BPL into the modal logic wK4, based on which they
present two alternative semantics for BPL: the proper successor semantics on Kripke
frames and a topological semantics using the topological derivative operator.

The paper by Galit W. Sassoon considers challenging data on within-predicate and
between-predicate comparisons where adjectives and nouns behave in opposite man-
ner. In an interdisciplinary turn, Sassoon utilizes the psychological notion of a contrast
set to account for both the behavior of nouns and adjectives in the above comparisons.

Kerstin Schwabe sets out to present a new analysis of German argument condi-
tionals. Argument conditionals are conditional clauses which are anaphorically linked
to a propositional es-argument in the embedding clause (Max akzeptiert es, wenn Lea
Geige spielt. ‘Max accepts it if Lea plays the violin’). Schwabe identifies two different
implication types that occur in such conditional constructions and she discusses
restrictions on predicate classes that embed argument conditionals.

In their contribution, Yulia Zinova and Hana Filip argue for a third–biaspectual–
aspect category in Russian which complements the well-known perfective/imperfective
partition. A new diagnostic is proposed which identifies positive cases of perfective
aspect, thereby allowing us to establish the third biaspectual category with a clear
behavioral criterion.

We would like to thank all of the above authors and the anonymous reviewers for
their contribution to the volume. We are also very grateful to Maria Aloni, Johan van
Benthem, Matthias Baaz, and Sebastian Löbner for their generous financial support to
the conference through their respective research projects.

January 2015 Martin Aher
Daniel Hole
Emil Jeřábek

Clemens Kupke
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Research on Aspect: Reflections
and New Frontiers

Daniel Altshuler(&)

Heinrich Heine Universität, Düsseldorf, Germany
daltshul@gmail.com

Abstract. The tutorial gave an overview of the way aspectual meaning has been
analyzed in formal semantics. It focused on the way Klein (1994) influential
analysis has been extended in recent years to account for the modal properties of
aspectual operators. Based on the perfective aspect in Hindi and other languages,
I showed that Kleinian extensions which do not view aspectual operators as being
partitive with respect to events are inadequate. I explored some consequences of
this conclusion and suggested that studying the interface between aspectual and
adverbial meaning would allow us to address some of the most pressing issues.

Keywords: Aspect � Adverbs � Temporality � Modality � Semantics � Prag-
matics � Discourse

1 The Neo-Kleinian Analysis of Aspect

Consider the sentences in (1), which differ in grammatical aspect—i.e. the progressive
in (1)a, the perfective in (1)b and the perfect in (1)c. According to intuitions of native
speakers, there is a difference in meaning between the three sentences. While it seems
clear that (1)a differs from (1)b and (1)c in not entailing that Bill’s letter writing
culminated, it is difficult (perhaps impossible) to say what the difference between (1)b
and (1)c is without further context (Reichenbach 1947/1966, p. 228).

(1) a. Bill was writing a letter to complain.
b. Bill wrote a letter to complain.
c. Bill had written a letter to complain.

When context is provided, viz. (2), not only do we see a clear difference between (1)b
and (1)c, we observe yet another difference between (1)a and the other sentences. In (2)
a, we understand that the events of Sue coming home and Bill writing a letter over-
lapped in time. In (2)b, however, the most salient interpretation is that Bill wrote a letter
after Sue came home late, presumably in response to her lateness. Finally, in (2)c, we
understand the reverse relationship: Bill’s letter writing took place prior to Sue coming
home.

(2) a. Sue came home late. Bill was writing a letter to complain.
b. Sue came home late. Bill wrote a letter to complain.
c. Sue came home late. Bill had written a letter to complain.

© Springer-Verlag Berlin Heidelberg 2015
M. Aher et al. (Eds.): TbiLLC 2013, LNCS 8984, pp. 1–9, 2015.
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There are two types of research programs which address the data above. The first is
concerned with how grammatical aspect interacts with verbal meaning or aktionsart.
This research program is important because it sheds light on how natural language is
used to refer the completion (or lack thereof) of a given event. Another research
program seeks to explain its effects on discourse structure. This research program is
important because it sheds light not only on aspectual meaning, but also on discourse
dynamics and the semantics/pragmatics interface.

Klein (1994) pioneered an analysis that attempts to synthesize these two research
programs.1 He argued that the semantic function of grammatical aspect is to relate a
described eventuality to a topical time and the semantic function of tense is to relate the
topical time to the speech time. This idea has been extremely influential. Virtually all
recent conference presentations, journal articles, and dissertations on aspect cite it.2

Klein’s analysis has also given rise to influential work on the interaction between aspect
and tense, adverbs, modals, mood and evidentials.3 This work, which I will refer to as
the “neo-Kleinian analysis of aspect”, is summed up by the formulas below.4 (3) makes
Comrie’s (1976, p. 4) intuition that the progressive portrays a situation “from [the]
inside” precise: the time with respect to which we evaluate a progressive sentence is
contained within the described event that warrants the assertion. (4) models Comrie’s
intuition that the perfective portrays the opposite relation, i.e. it portrays a situation
“from [the] outside.” (5) captures Reichenbach’s 1947/1966 idea that the perfect
describes a “past of a past” or, put differently, it portrays that the event is over by the
topic time (Kratzer 1998).

(3) PROGRESSIVE: P t. e[t (e) P(e)]
(4) PERFECTIVE: P t. e[ (e) t P(e)]
(5) PERFECT: P t. e[ (e) < t P(e)]

2 Problem with the Neo-Kleinian Analysis of Aspect

A problem with Klein’s analysis is the existential quantification in (3). Applied to a
telic description such as write a letter, (3) would incorrectly predict that a sentence like
John was writing a letter entails culmination of the writing. Neo-Kleinians often
acknowledge this shortcoming, usually called the imperfective paradox (Dowty 1979),
and assume (often explicitly) that (3) could be enriched with a modal semantics.

1 See also the seminal work by Moens and Steedman (1988) which was discussed in the tutorial.
2 Klein’s work is an extension of Reichenbach 1947/1966, which is also widely cited (see Kamp 1999/
2013 for discussion). Work by Hans Kamp and colleagues (e.g. Kamp and Rohrer 1983, Kamp and
Reyle 1993, Kamp et al. 2011) on the anaphoric properties aspect, as well as work by Comrie (1976) and
Smith (1991) on the cross-linguistic properties of aspect also remain staples in current research on aspect.

3 Here is a small sample of such work: Kratzer 1998, Demirdache and Uribe-Etxebarria 2000, Iatridou
et al. 2001, Musan 2002, Paslawska, and von Stechow 2003, Gerö and von Stechow 2003, Grønn 2003,
Matthewson 2006, Deo 2006, Hacquard 2006, Bittner 2008, Rothstein 2008, Bary 2009, Deal 2009,
Thomas 2010, Altshuler 2012, 2014a, Rett and Murray 2013, Altshuler and Schwarzschild 2013.

4 ‘⊆’ stands for a subset relation; ‘<’ is a precedence relation; ‘τ’ is a function from an event to its run
time.
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Bary (2009) takes this challenge head-on and builds on work by Gerö and von
Stechow (2003) to propose the following modal extension of (3):

(6) PROGRESSIVE: P t. [Inertt e[t (e) 

There are two key ingredients in (6). The first is the relation ‘Inertt(w*)(w’)’ which
ensures that the world history w’ is the same as the actual world w* until the end of the
topic time t. The second is the relation ‘t ⊂°τ(e)’, which ensures that t is contained
within the run time of the event e, and t is not a final part of this run time. Given the
universal quantification, this amounts to the following truth-conditions: a progressive
sentence is true iff in every inertia world w’ of w* at the topic time t there is an event
e whose run time is a superinterval of t such that t is not a final part of this run time.
Disregarding problems with inertia worlds (see, e.g. Landman 1992), (6) shows that, in
principle, a neo-Kleninan analysis could be extended to deal with the imperfective
paradox.

A possible worry for (6) is that it now appears that the semantics of the progressive
is quite different from the perfective and the perfect in (4) and (5) respectively. Bary
(2009, pp. 111–112) addresses this worry with respect to the perfective, showing that
(4) could be extended in a parallel fashion:

(7) PERFECTIVE: P t [Inertt e[ (e) t 

The crucial difference that we saw in (3) and (4) is preserved in (6) and (7): whereas
the runtime of the P-event is a proper superinterval of the topic time t in (6), it is a
subinterval in (7). This difference ensures that the universal quantification over inertia
worlds—which plays a crucial role in (6)—is trivial in (7); (7) is truth-conditionally
equivalent to (4).

While this is a good result for languages like English and Russian, where perfective
of a telic VP always leads to a culmination entailment, it is not a good result for
languages in which the perfective of a telic VP leads to the imperfective paradox
analogous to (1)a.5 For example, as shown in (8), the perfective biskuT-ko khaa-yaa in
Hindi does not lead to the entailment that the cookie was finished (Singh 1998).

(8) maayaa-ne   biskuT-ko     khaa-yaa (par  use         puuraa  nahiin khaa-yaa)
Maya-ERG  cookie-ACC eat-PFV but  it-ACC  finish    not      eat-PFV

ate the cookie (but did not finish it)

(8) exemplifies what is often referred to as a non-culminating accomplishment—a kind
of description that raises foundational questions about what it means to be (im)per-
fective (Demirdache and Martin 2015). The data in (9), however, provides an important
clue:

5 The imperfective paradox is therefore a misnomer. See Altshuler (2014b) for more discussion.
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(9) #maayaa-ne  biskuT-ko khaa-yaa aur use ab tak khaa rahii  hai
Maya-ERG cookie-ACC eat-PFV   and it  still eat PROG be.PRS

As was first observed by Koenig and Muansuwan (2000) with respect to Thai, the
perfective may lead to the imperfective paradox (viz. (8)), but it is never used to
describe an event that was instantiated in the past and continued to develop until the
speech time. That is, the perfective in (9) cannot be used in a way analogous to the
progressive in, e.g. “Maya was eating the cookie and she still is.”

In sum, we have aspectual forms of the kind illustrated below, in Fig. 1. There are
imperfective forms like the English progressive, which lead to the imperfective paradox
and are used to describe an event that was instantiated in the past and continued to
develop until the speech time. We also have perfective forms like the Russian per-
fective, which do not lead to the imperfective paradox and are therefore never used to
describe an event that was instantiated in the past and continued to develop until the
speech time. Finally, we have perfective forms like in (8) and (9), which lead to the
imperfective paradox but cannot be used to describe an event that was instantiated in
the past and continued to develop until the speech time.

The c-form in Fig. 1 is not discussed by the neo-Kleinians and this is both sur-
prising and unfortunate. It is surprising since many (if not most!) of the perfective
forms in the world’s languages are of this kind (Altshuler 2014b). It is unfortunate
because it seems implausible that Klein’s analysis could be extended to account for
the distinction in a- and c-forms on the one hand, and b- and c-forms on the other,
especially if one also wanted to preserve Bary’s insight in (6)–(7). The implausibility of
extending Klein’s account to account for these different forms is highlighted by Grønn
(2003) proposal to include a new aspectual operator into the Kleinian typology—one
that imposes the overlap relation.6 In order to account for the imperfective paradox, he
suggests that “one could replace the imperfective condition e O t with a disjunction
t ⊆ e ∨ e ⊆ t. The modality could then be smuggled into the first disjunct” (ibid, 58).
The issue, of course, is: how do you smuggle in the modality? Moreover, how does one
make the modality fine grained enough to explain the difference between the a- and c-
forms, which both lead to the imperfective paradox?

To the best of my knowledge, Koenig and Muansuwan 2000 were the first to
address such questions. Working to explain the perfective in Thai, which could be
classified as a c-form in Fig. 1 above, Koenig and Muansuwan proposed that the
perfective imposes a maximality constraint: given a property of events P, a P-event
must be the maximal subpart of the possible continuations that have the property P.
A similar analysis was also proposed by Filip (2000, 2008) to account for the perfective
in Slavic languages, and Altshuler (2014b) showed how this analysis could be
implemented within Landman’s (1992) modal semantics. Part of the tutorial was
devoted to going through these analyses and motivating the hypothesis in (10):

6 This builds on Smith’s (1991) idea that there is an aspectual class, neutral aspect, whose meaning
generalizes across the perfective/imperfective. See Csirmaz 2004 and Altshuler 2014b for more
discussion.
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(10) Hypothesis from Altshuler 2014b
a. An operator is perfective if it requires a maximal stage of an event in the 

extension of the VP that it combines with.

Due to space constraints, I will not discuss this hypothesis here. Instead, I’d like to
highlight an implicit assumption in (10): aspectual operators are partitive with respect
to events; they denote functions from a set of events denoted by a VP to a set of VP-
event parts.

An important conclusion of the tutorial was that (11) is necessary if one wants to
explain the contrasting perfective forms in languages like English/Slavic versus Hindi/
Thai (viz. Fig. 1), while also having a theory of what it means to be (im)perfective.7

3 Moving Beyond the Neo-Kleinian Analysis of Aspect

In the tutorial, I suggested that if we want to maintain (10), as the data suggests we
should, then we must move beyond the neo-Kleinian analysis. In particular, we need to:
(a) define event partitivity (viz. discussion in the previous section) and (b) distinguish
the way that eventualities are related to temporal coordinates provided by temporal
adverbs and those provided by the tenses. In what follows, I briefly outline two puzzles
that provide motivation for (b).

3.1 Present Perfect Puzzle

Klein (1992) notes that while past-oriented temporal adverbs like yesterday are not
possible with the present perfect in English, they are possible in German:

(11) *Yesterday Fritz has submitted his paper.
(12) Gestern hat Fritz seine Arbeit eingereicht

Yesterday has Fritz his paper submitted

While there are many proposals to explain the contrast above, the tutorial considered the
following analysis by Kamp et al. (2013) the English perfect denotes a function from a

Form
Is it ever used to describe an event that 

was instantiated in the past and continued 
to develop until the speech time?

Does it ever lead to 
the imperfective 

paradox?
a. English progressive Yes Yes
b. Russian perfective No No
c. Hindi perfective No Yes

Fig. 1. Contrasting aspectual forms

7 In this way, I defended Bach’s (1986, p. 12) original idea, formalized by Krifka (1992, p. 47). See
also Moens and Steedman (1988) for similar ideas about partitivity over events. Cf. Bennett and
Partee (1972) which propose a partitive analysis with respect to intervals (rather than events).
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set of events E to a set of result states S of those events. Moreover, the perfect imposes
two requirements: (a) there must be a result state in S that holds throughout the time
provided by the tense, and (b) there must be an event complex that includes an event in
E and a result state in S that is contained within the temporal coordinate provided by the
adverb. Applying this analysis to (11), we derive a contradiction: (a) the result state of a
paper submission holds throughout the time provided by the tense, i.e. the speech time,
and (b) the paper-submission event, including the result state, takes place yesterday.

In contrast to (11), (12) is predicted to be good according to Kamp et al. (2013)
because the German perfect requires a described event, not the entire event complex, to be
contained within the temporal coordinate provided by the adverb. Therefore, no contra-
diction arises. The picture that emerges, then, is that all perfect operators relate results
states to the temporal coordinate provided by the tense. They differ, however, in what
event part is related to the temporal coordinate that is provided by temporal adverbs.

3.2 Russian Imperfective Puzzle

Altshuler (2012) notes a puzzle with respect to the interpretation of the imperfective
aspect in flashback discourses such as (13) below. Here we see the imperfective in (13)b
and (13)c. And although there is no order that the events described in (13)b and (13)c are
understood to have occurred in, both are understood to precede the kissing event
described in (13)a. Such is the case whether or not there is a temporal adverb in (13)b.
If the adverb is there, then the flower-giving and the theater-inviting are understood to
have taken place within the time denoted by za nedelju do togo (‘a week before that’)—
i.e. during the week prior to the kissing event, which itself took place a week before the
speech time.8

(13) a. Nedelju nazad     Marija po-celova-l-a         Dudkina.
Week    ago     Maria  PFV-kissed-PST.3S-FEM Dudkin

b. (Za     nedelju do togo) on dari-l ej   cvety
From week    to   that   he give.IPF-PST.3S her  flower

c. i       prigla a-l ee v    teatr. 
and  invite.IPF-PST.3S her to  theater 

What is puzzling about this discourse is that—assuming that the temporal adverb in
(13)b contributes information about the topical time—we are led to the analysis that the
Russian imperfective describes an event (e.g. giving flowers) that is contained within a
topical time (viz. the perfective in (4)). However, given such an analysis of the Russian

8 Although I focus on the episodic interpretation of (15b, c), an iterative interpretation is also possible,
in which Dudkin gave flowers and invited Maria to the theater on several occasions. On such an
interpretation, the iterations are still understood to have occurred during the week prior to the kissing
event.
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imperfective, one would be hard pressed to explain the aforementioned inferences in
(13)b, c without the temporal adverb in (13)b.

Analogous to Kamp et al. (2013), Altshuler (2012) proposes to solve this puzzle by
distinguishing the way that eventualities are related to temporal coordinates provided
by temporal adverbs and those provided by the tenses. In particular, I proposed that an
event described by the Russian imperfective is related to the temporal coordinate
provided by the adverb, and a result state of that event is related to the temporal
coordinate provided by the tense. The Russian imperfective differs from the German
perfect in the type of relations that it imposes between these two coordinates, as well as
in its modal properties.

4 Take-Home Message

The main take-home message of the first part of the tutorial was the idea that aspectual
operators are partitive with respect to events. While this hypothesis is not new (see
Footnote 8), it is important because it can explain cross-linguistic patterns that the neo-
Kleinian analyses cannot. The take-home message of the second part of the tutorial was the
idea that we need to distinguish the way that eventualities are related to temporal coor-
dinates provided by temporal adverbs and those provided by the tenses. Evidence for this
view came from the present perfect puzzle in Germanic and the imperfective in Russian.
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1 Introduction

Most theorems have more than one proof and most theories have more than
one axiomatization. Certain proofs or axiomatizations are preferable to others
because they are shorter or more transparent or for some other reason. Our
aim is to describe or study the possible proofs of a theorem or the possible
axiomatizations of a theory. As the former is a special instance of the latter, by
considering a theory consisting of one theorem, it suffices to consider theories.

To describe the possible axiomatizations of a theory we first have to spec-
ify what we mean by a theory and what counts as an axiomatization of it. We
assume that theories are given by consequence relations, and consider an arbi-
trary consequence relation to be an axiomatization of the theory if it has the
same theorems as the consequence relation of the theory.

In [1] Avron argues convincingly that in general a logic is more than its set of
theorems, meaning that there exist logics which have the same set of theorems
but which nevertheless do not seem to be equal. For example, because the proofs
of certain theorems differ with the logic. Then the question what counts as an
axiomatization of a certain theory becomes more complex in that one wishes to
axiomatize certain other characteristics of the theory, such as certain inference
steps, rather than just its theorems.

In this paper, however, we restrict ourselves to the set of theorems as that
part of a theory that an axiomatization has to capture. And as we will see,
already in this case the variety of possible axiomatizations of a theory can be
quite complicated and is in many cases not yet well-understood.

Thus our main aim is a description of the consequence relations that have
the same theorems as a given consequence relation. As it turns out, admissible
rules are the central notion here, where a rule is admissible in a theory if it
can be added to a theory but no new theorems can be proved in the extension.
Clearly, such extensions are axiomatizations of the original theory, which is why
admissible rules are so important in this setting.
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The notion of admissibility, although sometimes under a different name, goes
back to the 1930’s, but a systematic study of the subject was first undertaken
by Rybakov in the 1980’s [24] and is continued by him and many others till
today (see the bibliography for references). The first major results on this sub-
ject concerned the decidability of admissibility in certain intermediate and modal
propositional logics, such as intuitionistic logic, modal logic K4, GL and S4. Later,
the description of admissible rules in terms of bases was obtained for many of
these logics and their fragments. Nowadays there are many aspects of admissi-
bility that are studied. The work of Ghilardi [6] established a firm connection
between admissibility and unification theory, and provided an algebraic app-
roach to the issues discussed above. This algebraic approach to admissibility has
flourished over the last decade and has been especially successful in the setting
of substructural logics.

This paper is organized as follows. In Sect. 2 consequence relations and admis-
sible rules are defined, and the main aim is formulated in these terms. Section 3
contains some of the main results in the area, a summary that, because of lack
of space, is by no means complete. The paper ends with a brief discussion of
topics that have been omitted in the main exposition. I thank Emil Jeřábek for
useful comments on an earlier draft of this note.

2 Framework

To maintain a certain level of generality we assume that there is a language
L, which contains propositional variables or atoms p, q, r, . . . , and possibly some
connectives, constants or operators. There is a set of expressions FL in this
language that at least contains the propositional variables. In this way, what
we discuss below applies to various consequence relation, such as consequence
relations for propositional intermediate and modal logics, to mention the main
examples. But also consequence relations that are relations on sequents rather
than formulas are captured by this approach. Although some of what we are
going to say also applies to predicate logics, we restrict ourselves in this paper
to propositional logics. Substitutions σ are maps from FL to FL that commute
with all logical symbols in the language.

2.1 Consequence Relations

Multi-conclusion consequence relations are relations � between sets of expres-
sions. We write Γ � Δ if the pair (Γ,Δ) belongs to the relation. We also write
Γ/Δ for the pair (Γ,Δ), and A,Γ for {A} ∪ Γ, and Γ,Π for Γ ∪ Π. A finitary
multi-conclusion structural consequence relation (mcr) is a relation � between
finite sets of expressions that satisfies, for all finite sets of expressions Γ,Γ′,Δ,Δ′

and expressions A:

reflexivity A � A,
weakening if Γ � Δ, then Γ′,Γ � Δ,Δ′,
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transitivity if Γ � Δ, A and Γ′, A � Δ′, then Γ′,Γ � Δ,Δ′,
structurality if Γ � Δ, then σΓ � σΔ for all substitutions σ.

A finitary single-conclusion consequence relation (scr) is a relation between
finite sets of expressions and expressions satisfying the variants of the three
properties above where there is a singleton to the right of �, and Γ � {A} is
replaced by Γ � A. We often omit the word “finitary” in what follows, and when
we speak about “consequence relations” we refer to both multi-conclusion and
single-conclusion ones.

Although most logics we discuss can be represented via a single-conclusion
consequence relation, the multi-conclusion analogue allows us to express cer-
tain properties more naturally, such as the disjunction property. It follows from
Proposition 1 below that an intermediate logic has the disjunction property if
and only if {p ∨ q}/{p, q} is admissible, and similarly for modal logic and the
modal disjunction property, expressed by the admissibility of {�p ∨ �q}/{p, q}.

The minimal single-conclusion and multi-conclusion consequence relations �m
and �mm are defined as follows.

Γ �m A ≡def A ∈ Γ Γ �mm Δ ≡def Γ ∩ Δ �= ∅.

A is a theorem if ∅ � A, which we write as � A. The set of all theorems of
a consequence relation is denoted by Th(�). Δ is a multi-conclusion theorem
if � Δ, which is short for ∅ � Δ. The set of all multi-conclusion theorems is
denoted by Thm(�). When we speak about consequence relations in general we
use the word theorem, meaning theorem in case the relation is single-conclusion
and multi-conclusion theorem in case the relation is multi-conclusion.

Given a logic L with set of theorems Th( L), there are in general many multi-
conclusion consequence relations � such that Th(�) = Th( L). Natural examples
are

Γ � Δ ≡def Δ ∩ Th( L) �= ∅,

or, in case the language contains implication and conjunction,

Γ � Δ ≡def ∃A ∈ Δ(
∧

Γ → A) ∈ Th(�).

Both these consequence relations are saturated, meaning that

Γ � Δ ⇒ ∃A ∈ ΔΓ � A.

Clearly, every single-conclusion consequence relation is saturated. And if one
starts with a single-conclusion consequence relation or logic and wishes to asso-
ciate a saturated multi-conclusion consequence relation with it (meaning with
the same theorems as the single-conclusion consequence relation or logic), then
the two consequence relations given in the previous paragraph provide examples.
In the next section we encounter multi-conclusion consequence relations that are
no longer saturated, such as the admissibility relation.
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2.2 Admissible and Derivable Rules

A (multi-conclusion) rule is an ordered pair of finite sets of expressions, written
Γ/Δ or Γ

Δ . It is single-conclusion if |Δ| = 1, in which case we also write Γ/A for
Γ/{A}. For R = Γ/Δ and a substitution σ, σR is short for σΓ/σΔ, and similarly
for sets of rules.

Given a multi-conclusion consequence relation � and a set of rules R, �R

is the smallest consequence relation extending � for which Γ � Δ holds for all
Γ/Δ in R. Similarly for single-conclusion rules and single-conclusion consequence
relations. In case of a single rule R we write �R for �{R}. Given a consequence
relation �, a set of rules R is a basis for a consequence relation �′ ⊇ � or axioma-
tizes �′ over � if �′ = �R. A rule R = Γ/Δ is derivable if Γ � Δ. It is admissible,
written Γ |∼Δ, if Thm(�) = Thm(�R), and Th(�) = Th(�R) in case � and
R are single-conclusion. A set of rules is admissible if all of its members are.

As can be seen from the definition, a rule is admissible when one can add it
to the consequence relation without obtaining new theorems, just (possibly) new
derivations. This shows that admissibility solely depends on the theorems of a
consequence relation, while derivability does not. The admissibility relation |∼
itself is a consequence relation, namely the largest consequence relation with
the same theorems as �. Therefore, the main topic of this paper, the possible
axiomatizations of a theory, can now be reformulated in exact terms as the
admissible rules of consequence relations.

The following proposition provides the link between admissibility and unifi-
cation.

Proposition 1. For every saturated consequence relation �,

Γ |∼Δ ⇔ ∀σ : ∀A ∈ Γ (� σA) ⇒ ∃B ∈ Δ(� σB).

Therefore every single-conclusion consequence relation satisfies

Γ |∼A ⇔ ∀σ : ∀B ∈ Γ (� σB) ⇒ � σA.

In the literature admissibility is often defined via the equivalence above.
A single-conclusion consequence relation � is structurally complete [19] if all

proper extensions in the same language have new theorems. It is not difficult
to see that � is structurally complete if and only if it coincides with |∼ . Thus
structural completeness means that there are no “hidden” principles of inference,
no underivable admissible rules, all valid inferences are already captured by the
consequence relation itself.

3 Results

Classical propositional logic as well as a certain formulation of classical predicate
logic in which substitution is an explicit rule, are structurally complete [19,20].
Or, to be precise, for any rule Γ/A admissible in classical logic, (

∧
Γ → A) is

a theorem of classical logic, and therefore Γ/A is derivable in any consequence
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relation for classical logic in which the deduction theorem holds. Nonderivable
admissible rules appear as soon as one turns from classical logic to extensions
such as modal logic or weaker logics such as intermediate logics. There do exist,
though, some proper intermediate and modal logics that are structurally com-
plete, Gödel-Dummett logic LC being an example [5].

3.1 Decidability

Rybakov proved numerous results on admissibility, most importantly the decid-
ability of the admissibility relation of intuitionistic propositional logic IPC, the
modal logics K4, GL, S4 and several other intermediate and modal logics [24]. He
thereby answered a question by Harvey Friedman from 1975 about the decid-
ability of admissibility in intuitionistic logic positively. Rybakov’s method can
be adapted to many other logics, as has been done in [2,18,25,26], where the
decidability of admissibility in various temporal logics and minimal logic is estab-
lished. Ghilardi constructed a transparent algorithm for deciding admissibility in
IPC [7], and Metcalfe and the author developed proof systems for admissibility
for several well-known intermediate and modal logics, from which decision algo-
rithms can be obtained as well [11,12]. Jeřábek proved that the complexity of
the admissibility relation is coNEXP-complete in many modal and intermediate
logics such as K4, S4, GL and IPC [15], thus showing that in these logics checking
admissibility is strictly more complex than checking derivability.

Derivability is a special case of admissibility, and therefore decidability of
the latter implies the decidability of theoremhood in the former. That the other
direction does not hold has been shown in [3], and later also in [34], where certain
modal logics are shown to be instances of this phenomenon.

3.2 Bases

An explicit description of the admissible rules is a next step in the investiga-
tion of logics for which the admissibility relation is decidable. Even in the case
that admissibility is undecidable it cannot be excluded that there exists a useful
description of them, but until now the logics for which such an explicit descrip-
tion has been found all have a decidable admissibility relation.

Rybakov in [24] showed that various modal and intermediate logics, including
IPC and K4, cannot have a finite basis for their admissible rules. This, of course,
does not imply that these logics do not have an infinite basis that still can be
described in a compact way. As we will see, they often do.

Roziére [23] was the first to provide a concrete basis for the admissible rules
for a logic for which the problem is not trivial, by proving that the set V of the
so-called Visser rules is a basis for the admissible rules of IPC. This result was
not published and was independently but later obtained by the author, who,
using techniques from [6], strengthened it by showing that in every intermediate
logic in which these rules are admissible they form a basis [10]. This theorem
has implications for several intermediate logics. It implies, for example, that the
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rules are a basis for the admissible rules in the logics of frames with exactly n
maximal nodes. In particular, they are a basis for KC.

The Visser rules also appeared in the work of Visser [30,31], who proved that
the admissible rules of IPC and Heyting Arithmetic are equal, and Skura [27],
who used them in the context of refutation systems. Examples of intermediate
logics in which not all Visser Rules are admissible are the Gabbay–de Jongh
logics [9] and Medvedev logic, which is structurally complete [10,22,33].

Using similar techniques, Jeřábek provided bases for many transitive modal
logics, including well-known logics such as K4, S4 and GL [14]. For modal logics
below K4 much less is known about admissibility. Some partial answers can be
found in [16,32].

As one would expect, admissibility is very sensitive to the language one uses.
It has long been known that the implicational fragment of IPC is hereditarily
structurally complete [21]. The same holds for the implication–conjunction and
some other fragments of IPC [17,29]. In [17] Mints showed that any admissible
underivable rule of IPC must contain both implication and disjunction. Inter-
estingly, the implication–negation fragment of IPC is not structurally complete,
as was first observed by Wroński. In [4] Cintula and Metcalfe proved that the
so-called Wroński Rules are a basis for the admissible rules of this fragment.
A nontrivial example of a logic for which the implication–negation fragment is
structurally complete is relevant logic [28].

4 Furthermore

The above is but a brief summary of some of the highlights in the area of admis-
sibility. I have mainly covered the topics that I have treated in my tutorial in
beautiful Gudauri. Several equally important aspects of admissibility have been
omitted due to lack of space. Over the last twenty years, admissibility has been
studied in various other contexts than the ones mentioned above, such as sub-
structural logics, canonical rules and predicate logic. Unification theory has been
central in some of the results described above. Also, the algebraic view on admis-
sibility has been explored and lead to various beautiful results. I hope that the
exposition above has made the reader wish to know more about this field and
that the bibliography may provide a guideline towards that aim.
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Abstract. This paper presents a novel semantics for deontic modals
which provides a uniform solution to prominent puzzles in the litera-
ture. The paper focuses on deontic conflicts, discussing them using the
Dr. Procrastinate puzzle as an example. The focus lies on the
Dr. Procrastinate puzzle as it combines an upward monotonicity puzzle
with a conflict of obligations, allowing an explanation of the solutions to
both types of puzzle in detail.

The semantics is an extension of radical inquisitive semantics, and it
modifies Andersonian deontic modals as it introduces quantification over
alternatives. The solution to deontic conflicts is made possible by the
semantics allowing permission and prohibition statements to introduce
multiple violations. Each rule is assigned a different violation, allowing
for reasoning with rules also in cases where it is impossible to avoid
violating all rules.

1 Introduction

This paper aims to unravel conflicts between deontic modal auxiliaries such as
may and must. We will represent permission as ♦ϕ and obligation as �ϕ as is
standard.

A deontic conflict is a situation in which every state of affairs results in the
violation of a rule. For example, imagine a teenager whose mother and father are
both cross with her. The mother thinks she spends too much time in her room
and the father thinks she has stayed out too late. The two issue the following
punitive rules.

(1) a. Mother: You must leave your room. �p
b. Father: You may not leave your room. ¬♦p

The salient reading of the modals in (1) is deontic1 - (1-a) says that, according
to the rules which now apply to the teenager, if she does not leave her room, she
breaks these rules, and (1-b) says that leaving the room breaks rules. Naturally,

I am grateful to Jeroen Groenendijk, Stefan Hinterwimmer, Floris Roelofsen, Mandy
Simons, Carla Umbach, and Matthijs Westera for extensive discussion of the ideas
presented here and closely related topics, to two anonymous reviewers for construc-
tive criticism, and to the Estonian Research Council for their support.

1 May and must can also receive, among others, epistemic readings. For a related
treatment of epistemic modals, see [2].
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the two rules together are unfair, as she does not have any way to avoid dis-
pleasing both the mother and father. This situation is an example of a deontic
conflict as all choices for the teenager result in a violation of some rule. Such
deontic conflicts have been at the center of a number of prominent puzzles for
standard deontic logic.

Standard modal logic (SML) [29] and theories that extend it, such as Kratzer
semantics [23,24], express modals as quantification over possible worlds. Permis-
sion is represented as existential quantification and obligation (and thus pro-
hibition) as universal quantification. Kratzer adds two contextual features for
deontic modals. First, the modal base, which is a function f such that f(w) rep-
resents the content of a body of laws in a world w. Secondly, an ordering on
worlds according to how close they are to the ideal world.

Deontic conflicts such as the one in (1) are regrettably commonplace and
their existence poses a problem for the standard account. In SML, (1-a) is the
case when all accessible worlds are p worlds and (1-b) is the case when none
of the accessible worlds are p worlds. Obviously, these statements cannot both
be the case, so in each non-absurd state of evaluation, at least one of the rules
in (1) will be predicted to be false. But that’s counter-intuitive. The situation
is a deontic conflict precisely because both of those rules hold simultaneously,
leading to unavoidable trouble for the teenager.2

There are a number of well known puzzles for standard theories of deontic
modals: puzzles which include deontic conflicts such as the Dr. Procrastinate
puzzle,3 other puzzles such as Ross’s paradox,4 the free choice puzzle5 and the
conditional oughts puzzle,6 This paper will focus on the deontic conflicts and
Dr. Procrastinate.

Jackson’s Dr. Procrastinate puzzle focuses on an expert who, when asked to
write a review, will not write it. This fact is represented by (2-a). As experts
are expected to write reviews, intuitively, the obligation7 in (2-b) holds. As not
writing a review will delay the entire process of a review actually being written,
(2-c) holds as well.

(2) a. Dr. Procrastinate will not write the review. ¬q
b. Dr. Procrastinate ought to accept the request and write

the review. �(p ∧ q)
c. Dr. Procrastinate ought not to accept the request. �¬p

2 This simple version of a deontic conflict does not pose a problem for Kratzer seman-
tics which also considers an ordering of worlds. See for example Lassiter [25, p. 151]
for discussion on deontic conflicts which also cause problems for Kratzer semantics.

3 See [19].
4 See [27].
5 See [20,30].
6 See [19].
7 In this paper, ought is used interchangeably with must because distinctions between

the two do not play a role in the presented treatment.
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In the literature on the puzzle it is agreed that there are two predictions to be
made. First, one should not be able to infer (3) from (2-b) as that leads to an
intuitive contradiction between (2-c) and (3).

(3) Dr. Procrastinate ought to accept the request. �p

Intuitively, (2-b) and (2-c) coexisting is not absurd as both can be the case simul-
taneously. This is the case because the obligation in (2-b) requires one to bring
about both p and q, and not p alone. In fact, accepting without writing is going
to delay the entire process. Unfortunately, standard accounts of deontic modals
are upward monotonic, which means that any entailment between propositions
holds also when those propositions are embedded under a modal operator, so
whenever ϕ |= ψ then Oϕ |= Oψ. As standardly the entailment in (4-a) holds,
so does the entailment in (4-b).

(4) a. p ∧ q |= p
b. �(p ∧ q) |= �p

According to the standard treatment of modals, the entailment in (4-b) holds, so
whenever (2-b) holds, so does (3). Immediately, a solution suggests itself on how
to avoid this part of the puzzle - the semantics for deontic modals should not be
upward monotonic. This approach has been adopted by many recent authors,
including Lassiter, Cariani and others. [11,25]. The treatment of deontic modals
presented here is also non-monotonic, but the lack of upward monotonicity is
motivated independently.

Looking ahead, we will consider the addition of multiple violations to the
semantics, so that different deontic rules can refer to separate violations. By
doing so, we wish to demonstrate that non-monotonicity is not a necessary com-
ponent for solving the deontic conflict described in the story.

Regarding the deontic conflict part of the puzzle, despite the fact that
Dr. Procrastinate will necessarily violate the obligation in (2-b), she could avoid
violating the second obligation in (2-c). The semantics ought to also predict that
her behaviour is more reproachable when she chooses to violate both obligations,
i.e., to accept the request to write the review, despite (2-a) being the case. This
fact does not concern monotonicity.

This paper will present the deontic semantics madris,8 which provides a
uniform solution to these prominent puzzles of deontic modals. madris stands
for Modified Andersonian Deontic Radical Inquisitive Semantics as it is in the
spirit of the current most prominent alternative to SML, which expresses modals
as Andersonian [7] implications to violations.9

Anderson introduced a distinguished proposition v to stand for sentences of
the kind “some rule has been violated.” When some ϕ is obligatory, when you
do not do ϕ then you have violated the obligation. This can be represented

8 Based on Aher [1,3,4].
9 Anderson introduced relevant implication instead of material implication, but a full

discussion of this logic is outside of the scope of this paper.
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as �ϕ := ¬ϕ → v. Similarly, if some ϕ is permitted then it would be odd to
find out that by doing ϕ you have incurred a violation. This intuition can be
represented as ♦ϕ := ϕ → ¬v.

A violation is not exactly a state of affairs or an unfortunate consequence
but rather the observation that some rules have not been followed. Anderson
[7, p.347] provides a useful analogy with chess to explain violations. According
to the rules of chess, a pawn may move at most two squares at a time. So, playing
e5 which moves the pawn three squares violates that rule. See the illustration
on the following page.10

Naturally, nothing stops a player from lifting the pawn from e2 to e5, nor will
a punishment necessarily follow. Yet, anyone that opens with e5 is not playing
chess according to its rules. And v records the fact some rule is violated.

Anderson’s treatment of deontic modals via material implication or rele-
vant implication suffers from a number of puzzles besides deontic conflicts, most
importantly, it does not account for the strengthening the antecedent puzzle
[8]. We will demonstrate in Sect. 3.8 that madris avoids the strengthening the
antecedent puzzle.

Implication plays an important role in an Andersonian treatment of deontics,
so for a modern treatment of implication, consider the conditional in (5).

(5) If I agree with you, then we will both be wrong. p → q

In the current prominent theory on conditionals by Kratzer [22,23], the ante-
cedent becomes the restrictor of a modal operator in the consequent that’s evalu-
ated with respect to a modal base and an ordering source. If no modal is found in
the consequent, it is assumed to be a covert epistemic necessity operator.11 (5) is
analyzed in Kratzer semantics with a covert necessity modal over the consequent
we will both be wrong and (5) is the case when, after restricting the modal base for

10 The image is taken from the popular online chess site chess.com.
11 A reviewer pointed out that there’s an alternative construal put forward by Frank [18],

Kaufmann and Schwager [21] and Cariani, Kaufmann and Kaufmann [12] among oth-
ers in which there’s always a covert epistemic necessity operator over the consequent
of a conditional.
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this necessity modal to all worlds where antecedent, I agree with you, holds, the
consequent, it must be that we will both be wrong, is the case as well.

In madris, conditionals are designed to make similar predictions to Kratzer
semantics12 but there is the option to go with a stronger clause for negation than
in Kratzer semantics, which is still weaker than classical negation for material
implication. The treatment accounts for Ramsey’s intuition that the conditional
question if p, then q? has two contrary answers if p, then q and if p, then not
q. This paper will illustrate the stronger clauses but is not committed to either
the stronger or weaker negation of conditionals.

We will be focusing on the crucial feature of inquisitive semantics that its
treatment of disjunction formalizes the intuition that or sentences serve to offer
alternatives. This has been suggested in the literature as a solution to the free
choice puzzle by, for example, Aloni [5]. Unlike previous accounts in which uni-
versal quantification over alternatives was a part of only the support-conditions
of a sentence, we also quantify universally over alternatives in the rejection-
conditions of deontic modals.

madris is an extension of radical inquisitive semantics, and it modifies Ander-
sonian deontic modals by introducing quantification over alternatives. This has
a significant effect on the treatment of the negation of modals. In madris, deon-
tic modals are related to implications, but due to different negation conditions
between the two, deontic modals cannot be defined via implication.

This account provides intuitive predictions for both modal sentences and
their negations, while offering a solution to the puzzles of SML.13

2 Semantics

Consider a propositional language with negation (¬), conjunction (∧) and impli-
cation (→) as its basic connectives, to which we add a class of special atoms
(v1 , v2 , ...) that state that a specific rule has been violated.

We introduce deontic sentential operators ( ), read as permis-
sion. We add a second deontic operator (obligation) standardly: .
The v...vn within the diamond and box symbols refers to the particular rule
which grants the permission or sets an obligation. Depending on the rule, modals
can refer to different violations, and we assume that each rule does generally refer
to a different violation.

Disjunction is defined in the usual way: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ). As in basic
inquisitive semantics (See [13–15]), an interrogative sentential operator is intro-
duced in the language by definition: ?ϕ := ϕ ∨ ¬ϕ, but it will not be utilized
here.
12 The treatment of conditionals will necessarily be brief. The radical framework, devel-

oped by Sano [28] and Groenendijk & Roelofsen [16], provides an intuitive basis for
this treatment of deontic modals. The details of a suppositional extension can be
found in [17].

13 We are constrained to deontic modals. See work in progress on suppositional inquisi-
tive semantics [2] on how to treat epistemic modals in a structurally similar manner.
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A world is a binary valuation of the atomic sentences in the language, includ-
ing the designated atoms that state that a specific rule has been violated. Let A
be the set of atomic sentences. We represent a world w as a set which for each
a ∈ A contains either a or a, meaning that a holds in w, and that a doesn’t hold
in w, respectively. σ and τ are variables that range over states, which are sets of
worlds, and we use ω to denote the set of all worlds, which corresponds to the
ignorant state.

In our recursive semantics we define when a state supports (|=+) and rejects
(|=−) a sentence.14 We denote the set of states that supports a sentence by [ϕ]+

and states that reject a sentence by [ϕ]−. The recursive semantics that we will
state guarantees that [ϕ]+ and [ϕ]− are downward closed. i.e. if σ ∈ [ϕ]+ and
τ ⊆ σ, then τ ∈ [ϕ]+ and same for [ϕ]−. The meaning of a sentence is determined
by the pair 〈[ϕ]+, [ϕ]−〉.

For the propositional case there are always one or more maximal support-
ing/rejecting states for a sentence called alternatives.

Definition 1. Alternatives

Support-alternatives: alt[ϕ]+ := {σ ∈ [ϕ]+ | ¬∃τ ∈ [ϕ]+ : τ ⊃ σ}
Rejection-alternatives: alt[ϕ]− := {σ ∈ [ϕ]− | ¬∃τ ∈ [ϕ]− : τ ⊃ σ}
The key notions of inquisitiveness and informativeness are defined standardly
for inquisitive semantics (see, e.g., Ciardelli et al. [13, p. 9)]). But unlike in basic
inquisitive semantics, a sentence ϕ can be inquisitive or informative both on the
support-side and rejection-side, which is mirrored in the definition.

Definition 2. Inquisitiveness and informativeness

ϕ is support-inquisitive iff at least two alternatives support ϕ.
ϕ is rejection-inquisitive iff at least two alternatives reject ϕ.
ϕ is inquisitive iff ϕ is support-inquisitive or rejection-inquisitive.
ϕ is support-informative iff

⋃
[ϕ]+ �= ω.

ϕ is rejection-informative iff
⋃

[ϕ]− �= ω.
ϕ is informative iff ϕ is support-informative or rejection-informative.

According to the clause for support-informativeness, a sentence ϕ is informative
if the union of all its supporting states does not include all worlds, and likewise
for rejection-informativeness.

When the set of support-alternatives for ϕ, alt[ϕ]+, contains more than one
element then ϕ is (support-) inquisitive, and when the set of rejection-alternatives
for ϕ, alt[ϕ]−, contains more than one element then ϕ is (rejection-) inquisitive.
This plays a crucial role in explaining free choice phenomena concerning deontic
modals.
14 There is a further extension of the system [17] which distinguishes a third relation

between states and sentences which concerns a state dismissing a supposition of a
sentence. In the semantics presented here, when a state rejects p, it both supports and
rejects p → q, and ♦p. In the suppositional extension such states are characterized
as neither supporting nor rejecting them, but as dismissing a supposition of theirs.
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Since meanings are determined by the pair of supporting and rejecting states,
entailment should also be stated relative to both components of meaning. Clas-
sically this would be a correct, but redundant formulation as the support and
reject perspective on entailment would coincide.

Definition 3. Entailment

Support-entailment: ϕ |=+ ψ iff [ϕ]+ ⊆ [ψ]+

Rejection-entailment: ϕ |=− ψ iff [ψ]− ⊆ [ϕ]−

Entailment: ϕ |= ψ iff ϕ support-entails ψ and ϕ rejection-entails ψ.

According to Definition 3, a sentence ϕ support-entails the sentence ψ if every
state that supports ϕ also supports ψ, and likewise for rejection. The dual nature
of entailment plays an important role in the explanation of various deontic
puzzles.15

The recursive statement of the semantics is as follows.

Definition 4 (MADRIS).

Atomic sentences:
σ |=+ p iff ∀w ∈ σ : p ∈ w
σ |=− p iff ∀w ∈ σ : p ∈ w

Negation:
σ |=+ ¬ϕ iff σ |=− ϕ
σ |=− ¬ϕ iff σ |=+ ϕ

Conjunction:
σ |=+ ϕ ∧ ψ iff σ |=+ ϕ and σ |=+ ψ
σ |=− ϕ ∧ ψ iff σ |=− ϕ or σ |=− ψ

Implication:
σ |=+ ϕ → ψ iff ∀τ ∈ alt[ϕ]+ : τ ∩ σ |=+ ψ
σ |=− ϕ → ψ iff ∃τ ∈ alt[ϕ]+ : τ ∩ σ |=− ψ
Deontic permission:
σ |=+ ϕ iff ∀τ ∈ alt[ϕ]+ : τ ∩ σ |=− v
σ |=− ϕ iff ∀τ ∈ alt[ϕ]+ : τ ∩ σ |=+ v

3 Illustrating the Semantics

The clauses of madris are illustrated below with examples.16

15 Equivalence is defined as mutual entailment.
16 The natural language examples are for illustration only. The actual picture of positive

and negative responses is naturally more complicated. See for example Brasoveanu
et al. [10].
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3.1 Atomic Sentences

Consider the natural language example in (6).

(6) Sue sings.
a. Positive response: Yes, Sue sings. p
b. Negative response: No, Sue does not sing. ¬p

The treatment of atomic sentences is standard, but as is characteristic of the rad-
ical approach to inquisitive semantics, the semantics specifies both the support
and rejection conditions for a sentence. According to clause 1 of Definition 4, an
atomic sentence p is supported by a state σ if p holds in every world w in σ; and
p is rejected in σ if p holds in no world w in σ.

This means that there is a unique maximal state σ that supports p, a unique
element of alt[p]+, which consists of all worlds where p holds; and a unique
maximal state σ that rejects p, a unique element of alt[p]−, which consists of
all worlds where p does not hold. The fact that there is a single maximal state
means that atoms are neither support-inquisitive nor rejection-inquisitive.

As the maximal supporting state does not include worlds where ¬p holds,
and the maximal rejecting state does not include worlds where p holds, p is both
support informative and rejection informative. We will generally omit discussion
of informativeness below, unless a sentence is not informative.

The meaning of the atomic sentences p and q is depicted in Figs. 1 and 2,
respectively, where the circles correspond to worlds that concern only the value of
these two atomic sentences. Maximal states that support a sentence are indicated
by solid lines; maximal states that reject a sentence are indicated by dashed lines.

3.2 Negation

Negation is illustrated by the negative response to the atomic sentence in (6).
According to clause 2 of Definition 4, negation flips between support and rejec-
tion, so that a sentence ¬ϕ is supported by a state σ if σ rejects ϕ and con-
versely for the rejection of ¬ϕ. This means that ¬ϕ is support-inquisitive when
ϕ is rejection-inquisitive, and vice versa. Consider the simple example ¬p, whose
meaning is depicted in Fig. 3.
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3.3 Conjunction

Consider the illustrating natural language example in (7).

(7) Sue sings and Mary dances.
a. Primary positive response: Yes, Sue sings and Mary dances. p ∧ q
b. Primary negative response 1 : No, Sue does not sing. ¬p
c. Primary negative response 2 : No, Mary does not dance. ¬q

According to clause 3 of Definition 4, a state σ supports a conjunction ϕ ∧ ψ if σ
supports both ϕ and ψ; and σ rejects this conjunction if σ rejects ϕ or σ rejects ψ.

Consider the simple example p∧q. A state σ supports p∧q if σ supports both
p and q. This means that alt[p ∧ q]+ consists of a single element, the state that
consists of all worlds where both p and q hold, and is thus not support-inquisitive.

A state σ rejects p∧q if it rejects either p or it rejects q. As alt[p∧q]− consists
of two elements, a state consisting of all worlds where p does not hold and a state
consisting of all worlds where q does not hold, p ∧ q is rejection-inquisitive. The
meaning of p ∧ q is depicted in Fig. 4.

3.4 Disjunction

ϕ∨ψ is defined in the standard way as ¬(¬ϕ∧¬ψ) and is illustrated by Fig. 5. As
disjunction corresponds to the negation of conjunction, it is support-inquisitive
but not rejection-inquisitive.

3.5 Implication

Implication directly utilizes the notion of alternatives as the universal quantifi-
cation in the support clause and the existential quantification in the reject clause
both concern the alternatives for the antecedent. According to clause 4 of
Definition 4, a state σ supports ϕ → ψ if every alternative (i.e., maximal sup-
porting state) for the antecedent ϕ, restricted to the information contained in σ,
supports the consequent ψ. A state σ rejects ϕ → ψ only when some maximal sup-
porting state for ϕ, restricted to the information contained in σ, rejects ψ. Con-
sider the simple example p → q, illustrated by the natural language example (8).

(8) If Sue sings, then Pete plays the piano.
a. Positive response:

Yes, if Sue sings, then Pete will play the piano. p → q
b. Negative response:

No, if Sue sings, then Pete won’t play the piano. p → ¬q

As explained above, there is only one maximal supporting state for an atomic
sentence p, consisting of all worlds where p is the case. This means that the
universal and existential quantification in the support and rejection clauses do
not play a crucial role with this example. A state σ supports p → q if the
maximal substate of σ where p is the case supports q. So, in all worlds in σ
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Fig. 4. p ∧ q
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Fig. 5. p ∨ q

pq pq

pq pq

Fig. 6. p → q

where p is the case, q should be the case as well. A state σ rejects p → q if the
maximal substate of σ where p is the case rejects q. So, in all the worlds in σ
where p is the case, q should not be the case. Figure 6 shows the meaning of
p → q. The quantification over alternatives in the clauses comes into play when
the antecedent or consequent is support-inquisitive. These effects are discussed
in the Subsect. 3.7 which compares implication and deontic permission.

3.6 Violation-Based Deontic Modals

According to the clause for permission, the state σ supports a permission state-
ment if every maximal supporting state for the prejacent ϕ, restricted to
the information contained in σ, rejects the violation v.

A state σ rejects if every maximal supporting state for ϕ, restricted to
the information contained in σ, supports v. So, a state that rejects permission
for ϕ supports the statement that ϕ is prohibited.

Consider the simple exaple illustrated by example (9).

There is only one maximal supporting state for an atomic sentence p, consisting
of all worlds where p is the case. The universal quantification in the support and
rejection clause concerns only this state. A state σ supports if the maximal
substate of σ where p is the case supports ¬v. So, in all worlds in σ where p is the
case, the violation v must not be the case. A state σ rejects if the maximal
substate of σ where p is the case supports v. So, in all worlds in σ where p is the
case, the violation v should be the case as well. The simple example is structurally
similar to implication and, in madris when the antecedent/prejacent of is
not inquisitive, it can be expressed via implication.

Proposition 1 If ϕ is not support-inquisitive, then .

This holds e.g. when ϕ is the atom p. As is evident, we follow Anderson’s
intuition that the meaning of deontic operators is connected to implication.
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Unlike implication, though, permission does not have an arbitrary sentence ψ as
its consequent, instead, permission always refers to a specific violation v. Fur-
thermore, the rejection clause for permission differs from the clause for impli-
cation, which will be discussed in Subsect. 3.7 where we compare modals and
implication.

Figure 7 illustrates , and the three deontic statuses: permission, prohi-
bition and neutrality. For convenience, non-violation worlds (v) are indicated
in green and violation worlds (v) in red.17 The illustrative picture allows one
to determine the deontic status of a state of affairs by seeing whether worlds
that support a state of affairs p are within, outside or both with respect to the
maximal state that supports the deontic statement in the figure.

Permission. The state where p is permitted has no pv world in the maximal
supporting state,18 so looking at p worlds, ¬v is also the case. The maximal
state for is illustrated by using a continuous line in Fig. 7.

Prohibition. The state where p is prohibited, has no pv world. The state which
supports is illustrated by using a dashed line in Fig. 8.

Neutral. Both of these states are deontically neutral towards ¬p as the maximal
supporting states include both a pv and a pv world.

pv pv

pv pv

¬p is neutral

when p, ¬v

Fig. 7. [ ]+/[p → ¬v]+

pv pv

pv pv

¬p is neutral

when p, v

Fig. 8. [ ]−/[p → ¬v]−

3.7 Comparing Implication and Permission

The differences between implication and permission concern their rejection con-
ditions and inquisitiveness. In the simple implication p → q quantification over
the alternatives for the antecedent play no significant role due to the antecedent
only having one maximal supporting state. This, however, is not the case for

17 If you are reading this in gray-scale, violation worlds are darker and non-violation
worlds are lighter.

18 SML treats permission as weaker, so does not guarantee that when you bring
about p, no violation occurs.
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(p ∨ q) → r, where the antecedent is a support-inquisitive disjunction for which
there are two maximal supporting states: the set of all worlds where p is the case
and the set of all worlds where q is the case (see Fig. 5).

The natural language example in (10) illustrates (p ∨ q) → r.

For a state σ to support (p ∨ q) → r, what should hold is that for each of the
two maximal supporting states for p ∨ q, when σ is restricted to it, the resulting
substate of σ supports r. So, in each world in σ where p is the case, r should also
be the case; and in each world in σ where q is the case, r should also be the case.

For a state σ to reject (p∨ q) → r, what should hold is that for one (or both)
of the two maximal supporting states for p∨q: the maximal supporting state for
p and the maximal supporting state for q, when σ is restricted to it, the resulting
substate of σ rejects r.

Consider (p → r)∧ (q → r). The first conjunct p → r is supported in σ if the
maximal state where p is supported, restricted to σ, also supports r. Likewise
for q → r. According to the clause for conjunction, the state σ supports (p →
r) ∧ (q → r) if both conjuncts are supported. So both the maximal supporting
states for p and for q, restricted to σ, also support r.

According to the rejection clause for conjunction, a state σ rejects (p →
r) ∧ (q → r) if it rejects either conjunct: p → r or q → r. A state σ rejects
p → r if all maximal supporting states for p, restricted to σ, reject r. Likewise
for q → r.

This means that (p ∨ q) → r is supported and rejected in the same states as
(p → r) ∧ (q → r) and hence that the two sentences are equivalent.

Proposition 2 (p ∨ q) → r ≡ (p → r) ∧ (q → r)

Classically this equivalence also holds and neither of the sentences is support-
inquisitive. The maximal supporting state for (p ∨ q) → r is illustrated in Fig. 9.
madris also produces the result that both sentences are rejection-inquisitive. As
we discussed with regard to p ∧ q above, illustrated by Fig. 4, this conjunction
is rejected when either p or q is rejected. The conjunction between p → r and
q → r should also be rejected when either conjunct is rejected. madris obtains
this result as illustrated by Fig. 10 showing the two maximal rejecting states for
(p ∨ q) → r.19

19 A comparison of Figs. 9 and 16 also shows that (p ∨ q) → r and (p ∧ q) → ¬r are
consistent with each other. This is also the case in Kratzer semantics if it’s combined
with an alternative-based treatment of disjunction. See for example Alonso-Ovalle [6].
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Fig. 9. [(p ∨ q) → r]+
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Fig. 10. [(p ∨ q) → r]−

In madris the free choice effect of receives a straightforward seman-
tic treatment, as is support-equivalent to ϕ → ¬v.

Proposition 3 [ (p ∨ q)]+ ≡ [(p ∨ q) → ¬v]+ ≡ [(p → ¬v) ∧ (q → ¬v)]+

The solution to the free choice problem in madris has been extensively discussed
in earlier work,20 so it is not repeated here. But it is helpful to use free choice
examples to illustrate the difference between the behaviour of implication and
permission under negation.

According to an Andersonian analysis of permission as an implication,
is support-inquisitive, but intuitively it is not.

The salient reading of (11) says that both disjuncts are prohibited. We refer to
this as the no choice reading, in that choosing to establish either a research center
or a laboratory will break the rule in (11). This is because the drafters of a law or
rule establish which permissions and obligations hold, which leaves no room for
inquisitiveness. This leads to the standard non-inquisitiveness intuition regarding
the interpretation of free choice examples and their negation (see example (11)):

, which the semantics predicts.
Unlike implication, both the support and reject clause for permission has uni-

versal quantification scoping over the prejacent, guaranteeing that even with an
inquisitive prejacent ϕ, is not rejection-inquisitive. For a state σ to support

, what should hold is that for each of the two maximal supporting
states for p ∨ q, p and q, restricting σ to them results in a substate of σ which
supports v. So, in each world in σ where p is the case, v should also be the
case, and in each world in σ where q is the case, v should also be the case. This
results in a single maximal rejecting state illustrated in Fig. 11. As we saw ear-
lier, due to the existential quantifier in the rejection clause for implication, when
the antecedent is support-inquisitive, an implication is rejection-inquisitive. As
illustrated by Fig. 12, [(p ∨ q) → ¬v]− contains two maximal rejecting states.

20 See [4], especially for discussion on how to also attain disjunctive readings under
permission.
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One rejecting state corresponds to [p → v]+ and is shaped like an ‘L’ while the
other rejecting state corresponds to [q → v]+ and is rectangle-shaped. Due to
not being rejection-inquisitive, is stronger than [(p ∨ q) → ¬v]−.21

The only way modals can be inquisitive is when an inquisitive connective scopes
over modals.

pqv pqv

pqv pqv

pqvpqv

pqv pqv

Fig. 11. [ (p ∨ q)]−

pqv pqv

pqv pqv

pqvpqv

pqv pqv

Fig. 12. [(p ∨ q) → ¬v]−

3.8 Strengthening the Antecedent

Besides deontic conflicts, an Andersonian treatment of deontic modals stan-
dardly suffers from the strengthening the antecedent puzzle. The modified Ander-
sonian treatment of modals allows madris to avoid this puzzle.

Andersonian modals which reduce deontic modals to implication inherit the
properties of implication; for example, material implication is downward monoto-
nic (DM). The property of DM shown in (12).

Downward monotonicity is generally regarded an unwanted property of deon-
tic modals due to the strengthening the antecedent puzzle that we will discuss
presently.

Strengthening the antecedent is a puzzle for material implication and other
DM implications. The problem lies in the fact that in a material implication
account an implication entails the implication where the antecedent has been
strengthened with a conjunct: (14).

In the following, we will distinguish between the clauses in madris and
material implication by representing the latter with →m. In propositional logic,
a conjunction entails its conjuncts:

We will make use of this entailment as in (14), the antecedent of the premise is
p and the antecedent of the conclusion is p ∧ q.

21 Stronger is understood through entailment: .
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As discussed by Lewis [26, p.80] and others, the entailment in (14) leads to
counter-intuitive examples such as (15).

Intuitively, we can accept (15-a) without accepting (15-b), but a material impli-
cation account of condtionals predicts that when (15-a) is the case, (15-b) cannot
be false. This is not to say that there do not exist natural language examples in
which the inference is more plausible. Consider (16).

Intuitively, we accept both (16-a) and (16-b). In fact, we can add any arbitrary
conjunct in (16-b), such as whistling, because it does not change the outcome.
But the existence of examples such as (15) demonstrates that the plausibility of
the inference in (16) cannot be a general inference rule for implication.

Strengthening the antecedent is also relevant for deontic modals. Recall that
Anderson defined a permission utterance as relevant implication from the preja-
cent to the negation of a violation v. Anderson used relevant implication but we
will adopt material implication for brevity’s sake. If the modal is defined using
material implication, then whenever (17-a) holds, (17-b) holds as well.

This leads to examples such as the following.

Intuitively, no-one would accept that when permission is granted to walk the dog,
this also grants permission to kill the president. So, strengthening the antecedent
should not to be valid for neither implication nor modals in madris. Because (13)
holds, if madris modals were DM, whenever (18-a) is the case, so would be (18-b).

Inmadris, strengthening the antecedent is not valid for implication or modals,
which means deontic modals are not DM in madris. We will demonstrate how
strengthening the antecedent fails in madris. The modal and implication case are
parallel.

Consider the maximal supporting and rejecting states for the premise and
conclusion in (18-a). A state σ supports p → r if the maximal supporting state
for p, restricted to σ, supports r. Such a state cannot contain worlds where p
and q hold, but r does not, nor worlds where p holds but q and r do not. On
the other hand, a state σ supports (p ∧ q) → r if the maximal supporting state
for p ∧ q, restricted to σ, supports r. The only worlds incompatible with such
a state are those where both p and q hold but r does not. We thus conclude
that every state that supports p → r also supports (p ∧ q) → r so that p → r
support-entails (p ∧ q) → r.
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This fact is illustrated in Figs. 13 and 14.
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Fig. 13. [p → r]+

pqr pqr

pqr pqr

pqrpqr

pqr pqr

Fig. 14. [(p ∧ q) → r]+
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Fig. 15. [p → r]−
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Fig. 16. [(p ∧ q) → r]−

The support-entailment explains the intuitiveness of the inference in (16).
When the additional information in the second conjunct does not have an effect
on the implication, we do end up at only worlds in which (p ∧ q) → r also holds.

It is only when we begin to consider how one might reject the two sentences
that the we see a difference. Recall that entailment looks at both supporting and
rejecting states, such that when ϕ entails ψ, every state that supports ϕ must
also support ψ and every rejecting state for ψ must be a rejecting state for ϕ.

Consider the maximal rejecting state for (p∧q) → r compared to the maximal
rejecting state for p → r. A state σ rejects (p∧q) → r if the maximal supporting
state for p ∧ q, restricted to σ, rejects r. As we are interested only in worlds
where both conjuncts hold, the only worlds that annot be in the state are those
where p, q and r hold. So it is possible to reject (p ∧ q) → r with relatively little
information.

Conversely, a state rejects p → r if the maximal supporting state for p,
restricted to σ, rejects r. Such a state cannot include both worlds where p, q and
r hold and also worlds where p and r hold but q does not hold. As we can see
in Figs. 15 and 16, the maximal rejecting state for (p ∧ q) → r is not a rejecting
state for p → r.

As (p ∧ q) → r only concerns the situation in which both p and q are the
case, it does not provide as much information regarding when r follows as p → r
which also concerns itself with pq worlds. This means that p → r does not
rejection-entail (p ∧ q) → r.

Recall that entailment requires both support-entailment and rejection-
entailment. As p → r does not rejection-entail (p∧q) → r, it also does not entail it.
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Due to the weaker rejection-conditions of the conclusion, strengthening the
antecedent is not a valid inference pattern, which explains the counter-intuitive
examples in the literature.

Also consider the deontic case. As with implication, the maximal supporting
state for supports so support-entails . This can be
determined by looking at Figs. 17 and 18. A state σ supports if the
maximal supporting state for p ∧ q, restricted to σ, rejects v. As the maximal
supporting state in Fig. 18 illustrates, the only world incompatible with
is the one where p, q and v all hold. This world is also incompatible with
because a state σ supports if the maximal supporting state for p, restricted
to σ, rejects v. So, for is incompatible with all p worlds where v is the
case. So the world where p and v are the case but q isn’t is also incompatible
with .

pqv pqv

pqv pqv

pqvpqv

pqv pqv

Fig. 17. [ p]+
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Fig. 18. [ (p ∧ q)]+
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Fig. 19. [ p]−
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Fig. 20. [ (p ∧ q)]−

From this we can conclude that grants less permission than . It
only grants permission for those situations in which both p and q are the case,
and does not say whether a violation is incurred or not in those worlds where q
is not the case. So it does not grant permission for cases where someone brings
about p without bringing about q. In this sense, is a weaker permission
statement than that does grant permission to bring about p without bringing
about q.

On the other hand, as we can see in Figs. 19 and 20, the maximal rejecting
state for is not a rejecting state for as it includes the world where
p is the case but q and v are not the case.
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is weaker than as it only concerns the situation in which both
p and q are the case. As such, for a state to reject , the state cannot be
such that it includes the worlds where both p and q are the case and no violation
is incurred.

The world where p holds but q and v do not does not concern the conjunction
example. Yet, the inclusion of this world does not satisfy the requirements for a
state to reject . For a state to reject , when p is the case, a violation must
occur. A state with the world where p is the case, but a violation does not occur,
is not a rejecting state for . This means that does not rejection-entail

, and then it also does not entail it.
madris provides a semantic solution to the puzzle of strengthening the

antecedent for implication and deontic modals in parallel fashion.22 So madris
correctly predicts that deontic modals are not DM.

3.9 Multiple Violations

The semantics allows the designation of v1 , v2 , etc for each specific violation.
Unlike Anderson’s original conceptualization, now vn stands for “rulen has been
violated” where n indexes each rule to a specific violation. Violations can be
reasoned about in the same manner as any other information but there is no
guarantee that every set of rules allows one to avoid all violations as there
exist inherently conflicted sets of rules. Multiple violations will allow one to
still determine the state with least violations.

Consider again the deontic conflict in (1), but this time we distinguish the
two deontic statements by mother and father as two separate rules.

This distinction is sufficient for madris to provide the tools required to state
that each alternative for the teenager results in a violation. Furthermore, madris
allows for a more fine-grained analysis of such a deontic conflict through the
introduction of multiple violations.

One way to conceptualize multiple violations is to differentiate deontic author-
ities. We will not use this conceptualization but it is useful to consider it briefly
to see its shortcomings.

In the above example, mother and father can be taken to represent different
deontic authorities: each provides rules they enforce largely independently of
the other. We could then say that there exists a violation for mother: v1 and a
violation for father: v2 .

What the analysis gains from such a treatment is that we can now differ-
entiate between different consequences of the inevitable breaking of the rules.

22 Strengthening the antecedent also doesn’t hold for obligation for the same reason as
it does not hold for implication and permission, but we do not have the space to go
through the calculations here.
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The teenager can reason from the fact that mother’s violation results in a stern
look (v1 → q) and father’s violation results in a more severe punishment (v2 → r)
that, wishing to avoid r, it is advantageous to stay in the room (¬p), even though
doing so also violates a rule.

But such a conceptualization is problematic as rules set by one authority, for
example by mother, can be inconsistent and deontic conflicts can still occur. For
reasons of forgetfulness, malice, etc. people create situations of deontic conflicts.
So, it could easily be the case that mother uttered both (19-a) and (19-b) in which
case the conceptualization does not allow us to reason about the consequences
of choosing p and ¬p in the same manner as before.

It is possible to reason that some rules are more important to follow than
others, even when they come from the same authority. A single law can specify
that the violation of one article is followed by a harsher punishment than another.
Consider different degrees of murder: manslaughter receives fewer years in prison
than murder even though the violations are considered from the perspective of
one authority - the state.

So, as is generally accepted in law, it is more plausible to assume that each
rule has its own violation associated with it, such that the statement (19-a) being
distinct from (19-b) would be the basis for associating (19-a) with v1 and (19-b)
with v2 .

A standard example of this in legal discourse, illustrated in (20), is a case
when a court deems someone guilty of violating one article of a law, but judges
that the defendant did not violate other articles of the same law.23

Were the conceptualization of multiple violations authority-based, the judgment
would be inconsistent: the defendant both incurs and does not incur the same
violation. But this is not plausible.24

Returning to the deontic conflict in (19), v1 refers to the rule (19-a) and v2
refers to the rule (19-b), so when the teenager chooses to leave the room, ¬p

holds, and via rule , v2 holds as well. This violation says that the rule in
(19-b) has been violated.

Further Work on Suppositions. A prevalent intuition regarding deontic
statements says that sentences such as should not provide information
regarding whether p or ¬p is the case. This intuition is straightforwardly accoun-
ted for in madris but it reappears with regard to certain deontic conflicts. Con-
sider the conjunction in (21) on the assumption that both permission statements
refer to the same violation.

23 This example is a simplification of a World Trade Organization panel report from
case DSU 344. For further details see [4, p. 104].

24 This is not to say that further work should not focus on more fine-grained concep-
tualizations.
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The conjunction in (21) is supported by a state σ if both conjuncts, (21-a) and
(21-b) are supported in the state. The first conjunct is supported by a state σ
if the maximal supporting state for p, restricted to σ, supports ¬v. The second
conjunct, (21-b), is supported by a state σ if the maximal supporting state for
p, restricted to σ, supports v. The conjunction is supported by σ only if there
exist no worlds that support p, i.e., the prejacent is not the case.

It is problematic that the conjunction of two permission statements, neither
of which alone provides information regarding whether p or ¬p is the case, pro-
vides the information that ¬p is the case. This is because both and
share the same prejacent p but the conjuncts provide contrary deontic informa-
tion. The first states that no violation is incurred, and the other than a violation
is incurred, which makes the two statements intuitively inconsistent.

madris does not yet have the tools to account for this type of an incon-
sistency, as it allows the prejacent to be vacuously supported by the empty
state. The maximal supporting state for (21) where the prejacent p is rejected
is illustrated in Fig. 21. Intuitively, this is a case of supposition failure as the
supposition that the prejacent p is the case fails in all cases.

pv pv

pv pv

Fig. 21. [ ]+

Not all deontic conflicts result in supposition failure. This paper focuses on
the majority of deontic conflicts which can be intuitively avoided in case the
permission and violation statements refer to different violations. But where such
interpretations are infelicitous, and we have to assume that both deontic state-
ments refer to the same violation, a deontic conflict results in supposition failure.

Groenendijk and Roelofsen have recently developed an extension of radical
inquisitive semantics called suppositional inquisitive semantics [17] which adds
suppositional content as a third component of meaning next to informative and
inquisitive.25 In the extension, the rejection of the antecedent of a conditional
or the rejection of the prejacent of a modal no longer vacuously supports the
implication or modal statement as a whole. To more accurately account for

25 Such an approach is not to be confused with work on presuppositions which, as far
as the author is aware, is an entirely disconnected phenomenon.
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examples such as (21), ongoing work extends suppositional inquisitive semantics
in the spirit of madris to also account for such cases.26

4 Solving Puzzles

Alongside deontic conflicts as a whole, this paper demonstrates how introducing
multiple violations solves the Dr. Procrastinate puzzle that combines an upward
monotonicity puzzle with a deontic conflict. This puzzle allows us to demon-
strate the finer workings of this non-monotonic semantics for deontic modals
with multiple violations.

4.1 Dr. Procrastinate

Recall the Dr. Procrastinate puzzle in example (2) repeated here as (22).

According to the literature, there are two predictions to make: i) the conjunction
of (22-b) and (22-c) is not intuitively absurd as they can be the case simulta-
neously; ii) we know that Dr. Procrastinate will violate the obligation in (22-b)
but could avoid violating the second violation in (22-c), so if Dr. Procrastinate
accepts, despite the fact that she will not finish writing the review, the semantics
should predict that her behaviour is more reproachable than when she does not
accept.

Upward Monotonicity. A standard approach to the puzzle concerns upward
monotonicity as (22-b) is generally represented by an embedded conjunction.
In SML and Kratzer semantics obligation is upward monotonic, so the embed-
ded conjunction in (22-b) entails the embedded conjunct , which
contradicts in (22-c).

For the sake of argument, assume that the obligations in (22-b) and (22-c)
refer to the same violation. madris captures that the obligations in (22-b) and
(22-c) are not contradictory because the semantics is not upward monotonic.

Recall that because madris specifies both support and rejection conditions,
entailment also concerns both support and rejection such that for ϕ to entail ψ
every state which supports ϕ must also support ψ and, also, every state which
rejects ψ must also reject ϕ. This two-fold requirement is classically the case, but
with the specified rejection conditions for permission and obligation, it makes
the semantics non-monotonic.

Consider and . For to entail , the definition of
entailment specifies two conditions: a) every state which supports must also
support , and b) every state which rejects must also reject .
26 See [2].
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Fig. 22. [ (p ∧ q)]+
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Fig. 23. [ p]+

Consider requirement (a) first. Figure 22 shows the maximal supporting state
for . A state σ supports if every rejection-alternative for (p∧q),
restricted to σ, supports v. alt[p ∧ q]− consists of two elements, one consisting
of all the worlds where p does not hold, and the other consisting of all the worlds
where q does not hold. Due to universal quantification over these alternatives,
σ supports when all worlds in σ where either p or q does not hold are
such that v does hold.

Figure 23 shows the maximal supporting state for . A state σ supports
if every alternative for ¬p, restricted to σ, supports v. alt[p]− consists of a

single element consisting of all the worlds where p does not hold, so σ supports
when all worlds in σ where p does not hold are such that v does hold.

As Figs. 22 and 23 illustrate, every state which supports also sup-
ports , so support-entails . To determine whether entailment also
holds, we also need to consider rejection-entailment.

Consider the rejection-entailment requirement that every state which rejects
must also reject . A state σ rejects if every alternative for ¬p,

restricted to σ, rejects v. alt[p]− consists of a single element consisting of all
the worlds where p does not hold, so σ supports when all worlds in σ where
p does not hold are such that v does not hold. The maximal rejecting state for

is shown on Fig. 24.
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Fig. 24. [ p]−
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Fig. 25. [ (p ∧ q)]−

Also consider that a state σ rejects if every rejection-alternative
for (p ∧ q), restricted to σ, rejects v. alt[p ∧ q]− consists of two elements, one
consisting of all the worlds where p does not hold, and the other consisting of
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all the worlds where q does not hold. Due to universal quantification over these
alternatives, σ rejects when all worlds in σ where either p or q does not
hold are such that v also does not hold. The maximal rejecting state for
is shown on Fig. 25.

Figures 24 and 25 illustrate that the maximal rejecting state for is not a
rejecting state for as it contains the world {pqv} which is not contained
in the maximal rejecting state for . Using this world, one can easily
provide a counterexample.

Consider the state {pqv, pqv} in which not writing the review can lead to a
violation. The state rejects because in the only world in the state where p

does not hold, v does not hold. But the state does not reject because in
the world pqv where q does not hold, v does hold. As demonstrably every state
which rejects does not reject , then does not rejection-entail

and thus, it also does not entail it. This also demonstrates that madris is
non-monotonic.

The non-monotonicity of madris arises from the rejection conditions spec-
ified in the semantics and motivated independently of the puzzle. Yet, non-
monotonicity alone is insufficient to account for the second intuition in the
Dr. Procrastinate puzzle. Introducing multiple violations accounts for both the
intuition that (22-b) does not contradict (22-c) and also for the second intuition.

Reasoning with Multiple Violations. The second intuition which needs to
be covered concerns the possibility that Dr. Procrastinate can avoid making the
situation worse by fulfilling (22-c), despite violating (22-b). To allow reasoning
in such a contrary to duty situation, the obligations will need to refer to different
violations. Introducing multiple violations provides a basic way to quantitatively
compare better and worse states by determining states with less violations.27

(23-a) can be dubbed the expert rule as it says that when you are an expert
in your field you have an obligation to accept requests to write reviews. If you
accept the request to write, you also ought to fulfill the request, which is to say
that one ought to write. For convenience, accepting a request and writing have
been combined into a single rule.

The procrastinate rule in (23-b) is also necessary because Dr. Procrastinate
will not write the book review, so (22-a) holds. Despite always failing to abide by
the expert rule, she can make things even worse by accepting and not writing.
The rule in (23-b) says that if you will not fulfill the request, you ought not
to accept it. In this case, not accepting the request delays the entire reviewing
process. As this ought to be avoided, the rule in (23-b) holds.

27 More involved scenarios will likely require a more fine-grained approach which com-
pares violations.
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In what follows, v1 says that the expert rule has been violated, and v2 says
that the procrastinate rule has been violated.

Intersecting (23-a), (23-b) and (22-a) and the maximal supporting state is
shown in Fig. 26. The worlds factively eliminated by ¬q are left gray. Green
worlds contain no violations, orange worlds only one and red worlds two
violations.

pqv1v2 pqv1v2

pqv1v2 pqv1v2

pqv1v2pqv1v2

pqv1v2 pqv1v2

pqv1v2 pqv1v2

pqv1v2 pqv1v2

pqv1v2

pqv1v2

pqv1v2

pqv1v2 pqv1v2

Fig. 26. (Color figure online)

The maximal supporting state for the story contains three worlds, so the rep-
resentation of the situation in madris is not absurd. Each of the worlds is a v1
world, which correctly captures the intuition that as long as Dr. Procrastinate
does not write the review, she is doing something wrong, i.e., she incurs a viola-
tion of the expert rule.

Furthermore, only one p world remains and in that world v2 occurs which
says that Dr. Procrastinate is also in violation of the procrastinate rule. This
means that madris predicts that in case Dr. Procrastinate does accept to write
a review, despite not writing it, then she will incur a second violation on top of
v1. Yet, the two remaining ¬p worlds differ in that one is a v2 world and the
other is a ¬v2 world (coloured orange because it contains only one violation).
When both a violation and a non-violation follows ¬p, we say that this state is
deontically neutral with respect to ¬p. Thus, Dr. Procrastinate - barring addi-
tional information - can avoid the second violation by not accepting to write the
review. And this is the second intuition for the semantics to capture.

5 Conclusions

madris is an alternative semantics for deontic modals that provides a uniform
semantic solution to puzzles of standard modal logic and Kratzer semantics.
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madris utilizes the radical inquisitive semantics account of conditionals and
provides a strong treatment of deontic permission. This non-monotonic semantics
for modals was developed to provide an intuitive account of the free choice effect
and monotonicity puzzles. The modification of the Andersonian treatment of
deontic modals by introducing quantification over alternatives, and especially
universal quantification in the rejection-clause for permission, madris also makes
intuitive predictions concerning the behaviour of modals under negation.

Furthermore, deontic conflicts and contrary to duty situations are common
in deontic contexts. madris allows one to reason with multiple violations that
not only avoid the problematic inferences in puzzles such as Dr. Procrastinate
but also give an intuitive characterizations of such situations.

The work in this article has recently been developed in the framework of sup-
positional inquisitive semantics which adds suppositional content to the seman-
tics. For further information, see [2].

References

1. Aher, M.: Deontic contexts and the interpretation of disjunction in legal discourse.
Canadian Journal of Linguistics/Revue Canadienne de Linguistique 58(1), 13–42
(2013). http://bit.ly/15FfFdB

2. Aher, M., Groenendijk, J.A.G.: Searching for directions: epistemic and deontic
modals in InqS. Presented at the Tenth International Tbilisi Symposium on Lan-
guage, Logic and Computation (TbiLLC), 26 September 2013 (2014). http://bit.
ly/1pA0kin

3. Aher, M.: Free Choice in Deontic Inquisitive Semantics (DIS). In: Aloni, M.,
Kimmelman, V., Roelofsen, F., Sassoon, G.W., Schulz, K., Westera, M. (eds.)
Logic, Language and Meaning. LNCS, vol. 7218, pp. 22–31. Springer, Heidelberg
(2012). http://bit.ly/UzirsR

4. Aher, M.: Modals in legal language. Ph.D. thesis, University of Osnabrück (2013).
http://bit.ly/1ca9Ru4

5. Aloni, M.: Free choice, modals, and imperatives. Nat. Lang. Semant. 15, 65–94
(2007). http://bit.ly/Zdh8k9

6. Alonso-Ovalle, L.: Disjunction in alternative semantics. Ph.D. thesis, University of
Massachusetts, Amherst (2006)

7. Anderson, A.R.: Some nasty problems in the formal logic of ethics. Nous 1, 345–360
(1967). http://bit.ly/NcSlZG

8. Asher, N., Bonevac, D.: Free choice permission is strong permission. Synthese
145(3), 303–323 (2005). http://bit.ly/RswjTm

9. Barker, C.: Free choice permission as resource-sensitive reasoning. Semant. Prag-
mat. 3, 1–38 (2010). http://bit.ly/16goZPL

10. Brasoveanu, A., Farkas, D., Roelofsen, F.: N-words and sentential negation: evi-
dence from polarity particles and VP ellipsis. Semant. Pragmat. 6, 1–33 (2013).
http://bit.ly/11wY2e0

11. Cariani, F.: Ought and resolution semantics. Noûs (2011). doi:10.1111/j.1468-0068.
2011.00839.x. http://bit.ly/LRCsJQ

12. Cariani, F., Kaufmann, M., Kaufmann, S.: Deliberative modality under epistemic
uncertainty. Linguist. Philos. 36(3), 225–259 (2011)

http://bit.ly/15FfFdB
http://bit.ly/1pA0kin
http://bit.ly/1pA0kin
http://bit.ly/UzirsR
http://bit.ly/1ca9Ru4
http://bit.ly/Zdh8k9
http://bit.ly/NcSlZG
http://bit.ly/RswjTm
http://bit.ly/16goZPL
http://bit.ly/11wY2e0
http://dx.doi.org/10.1111/j.1468-0068.2011.00839.x
http://dx.doi.org/10.1111/j.1468-0068.2011.00839.x
http://bit.ly/LRCsJQ
http://bit.ly/V6uWy6


Deontic Conflicts and Multiple Violations 43

13. Ciardelli, I., Groenendijk, J.A.G., Roelofsen, F.: Inquisitive Semantics: NASSLLI
2012 lecture notes (2012) Unpublished manuscript. http://bit.ly/V6uWy6

14. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Log. 40(1), 55–94 (2011).
http://bit.ly/NlCcRF

15. Groenendijk, J.A.G., Roelofsen, F.: Inquisitive Semantics and Pragmatics. Pre-
sented at the Stanford workshop on Language, Communication and Rational
Agency, 30–31 May 2009. http://bit.ly/MoWgAx

16. Groenendijk, J.A.G., Roelofsen, F.: Radical Inquisitive Semantics. presented first
at Osnabrueck University Institute of Cognitive Science Colloquium on the 13th
of January 2010. Unpublished http://bit.ly/NFO9zn

17. Groenendijk, J.A.G., Roelofsen, F.: Suppositional Inquisitive Semantics. In: Pro-
ceedings of the Tenth International Tbilisi Symposium on Language, Logic and
Computation (2014). Submitted

18. Frank, A.: Context dependence in modal constructions. Ph.D. thesis, University of
Stuttgart (1996)

19. Jackson, F.: On the semantics and logic of obligation. Mind, New Series 94(374),
177–195 (1985). http://bit.ly/OQSwx9

20. Kamp, H.: Free choice permission. In: Aristotelian Society Proceedings N.S 74, pp.
57–74 (1973). http://bit.ly/Rb1cxb

21. Kaufmann, S., Schwager, M.: A unified analysis of conditional imperatives.
In: Cormany, E., Ito, S., Lutz, D. (eds.) Proceedings of semantics and linguistic
theory(SALT), vol. 19, pp. 239–259 (2011). eLanguage

22. Kratzer, A.: Conditional necessity and possibility. In: Bäuerle, R., Egli, U., von
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Abstract. Contact logics are logics for reasoning about the contact rela-
tions between regular subsets in a topological space. Admissible inference
rules can be used to improve the performance of any algorithm that han-
dles provability within the context of contact logics. The decision problem
of unifiability can be seen as a special case of the decision problem of
admissibility. In this paper, we examine the decidability of admissibility
problems and unifiability problems in contact logics.

Keywords: Contact logics · Admissibility · Unifiability · Decidability

1 Introduction

The decision problem of unifiability in a logical system L can be formulated
as follows: given a formula φ(X1, . . . , Xn), determine whether there exists for-
mulas ψ1, . . . , ψn such that φ(ψ1, . . . , ψn) ∈ L. The research on unifiability
was motivated by a more general decision problem, the admissibility prob-
lem: given an inference rule “from {φ1(X1, . . . , Xn), . . . , φm(X1, . . . , Xn)}, infer
ψ(X1, . . .,Xn)”, determine whether for all formulas χ1, . . ., χn, if {φ1(χ1, . . ., χn),
. . . , φm(χ1, . . ., χn)} ⊆ L, then ψ(χ1, . . . , χn) ∈ L. In 1984, Rybakov [15] proved
that there exists a decision procedure for determining whether a given inference
rule is admissible in intuitionistic propositional logic. See also [16]. Later on,
Ghilardi [11,12] proved that intuitionistic propositional logic has a finitary uni-
fication type and extended this result to various extensions of K4. See also [9,10]
where decision procedures for unifiability in extensions of K4 are suggested.

Contact logics are logics for reasoning about the contact relations between
regular subsets in a topological space [5,17]. They are based on the primitive
notion of regular regions and on the Boolean operations (empty region, com-
plement of a region and union of two regions) that allow to obtain new regular
regions from given ones. In contact logics, formulas are built from simple for-
mulas of the form C(a, b) and a ≡ b — where a and b are terms in a Boolean
language — using the Boolean constructs ⊥, ¬ and ∨, the intuitive reading of
C(a, b) and a ≡ b being “the regular regions denoted by a and b are in contact”
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and “the regular regions denoted by a and b are equal”. The main semantics
of contact logics are the contact algebras of the regular subsets in a topological
space [6–8]. But contact logics have also received a relational semantics that
allow to use methods from modal logic for studying them [4].

In this setting, one important issue is the mechanization of reasoning in con-
tact logics. Since admissible inference rules can be used to improve the perfor-
mance of any algorithm that handles provability, it becomes natural to consider
admissibility and unifiability within the context of contact logics. In this paper,
we will examine variants of contact logics. The central result in this paper is the
proof that the admissibility problem and the unifiability problem are decidable
in these variants. In Sect. 2, we present the syntax and the semantics of these
variants. Section 3 is about their axiomatization/completeness and their decid-
ability/complexity. In Sects. 4–6, we define the admissibility problem and we
study its decidability. Section 7 is about the unifiability problem and its decid-
ability. See [16] for details about admissibility and unifiability and [17] for details
about contact logics.

2 Syntax and Semantics of Contact Logics

In this section, we present the syntax and the semantics of contact logics. We
adopt the standard rules for omission of the parentheses.

2.1 Syntax

To start with syntax, let us first consider a countable set AT of atomic terms
(with typical members denoted x, y, etc.) and a countable set AF of atomic
formulas (with typical members denoted X, Y , etc.). The terms (denoted a, b,
etc.) are inductively defined as follows:

– a : :=x | 0 | −a | (a � b).

The other Boolean constructs for terms (1, �, etc.) are defined as usual. We will
use the following notations:

– a0 for −a,
– a1 for a.

Reading terms as regions, the constructs 0, − and � should be regarded as the
empty region, the complement operation and the union operation. For all positive
integers n and for all (ε1, . . . , εn) ∈ {0, 1}n, formulas of the form xε1

1 � . . . � xεn
n

will be called monoms. In the sequel, we use a(x1, . . . , xn) to denote a term a
whose atomic terms form a subset of {x1, . . . , xn}. Considering a(x1, . . . , xn) as
a formula in classical propositional logic, let mon(a(x1, . . . , xn)) be the set of all
monoms of the form xε1

1 �. . .�xεn
n inconsistent with −a(x1, . . . , xn), that is to say

mon(a(x1, . . . , xn)) = {xε1
1 � . . . � xεn

n : (ε1, . . . , εn) ∈ {0, 1}n and a(x1, . . . , xn) is
a tautological consequence of xε1

1 � . . . � xεn
n }. The formulas (denoted φ, ψ, etc.)

are inductively defined as follows:
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– φ : :=X | ⊥ | ¬φ | (φ ∨ ψ) | C(a, b) | a ≡ b.

The other Boolean constructs for formulas (	, ∧, etc.) are defined as usual. We
will use the following notations:

– C̄(a, b) for ¬C(a, b),
– a �≡ b for ¬a ≡ b,
– a ≤ b for a � −b ≡ 0.

Reading formulas as properties about regions, the constructs C and ≡ should
be regarded as the contact relation and the equality relation. Sets of formulas
will be denoted Γ , Δ, etc. Formulas and sets of formulas are also called “expres-
sions” (denoted α, β, etc.). We shall say that an expression α is weak iff no
atomic formula occurs in α. In the sequel, we use α(x1, . . . , xn) to denote a weak
expression α whose atomic terms form a subset of {x1, . . . , xn}. A substitution
is a function s assigning to each atomic term x a term s(x) and to each atomic
formula X a formula s(X). As usual, s induces a homomorphism s(·) assigning
to each term a a term s(a) and to each expression α an expression s(α).

2.2 Semantics

Now, for the semantics. In [5,17], the language of contact logics is interpreted
either in relational structures, or in topological structures. In both cases, terms
are interpreted by sets of points. The main difference between the two kinds of
structures is the following: in relational structures, two regions are in contact
when at least one point of the first region is related to at least one point of the
second region whereas in topological structures, two regions are in contact when
their topological closures have a nonempty intersection. The two semantics have
been proved to be equivalent [5,17]. In this paper, we only consider the relational
semantics. A frame is a relational structure F = (W,R) where W is a non-empty
set of points and R is a binary relation on W . A valuation based on F is a function
V assigning to each atomic term x a subset V (x) of W . V induces a function
(·)V assigning to each term a a subset (a)V of W such that

– (x)V = V (x),
– (0)V = ∅,
– (−a)V = W \ (a)V ,
– (a � b)V = (a)V ∪ (b)V .

As a result,

– (a0)V = W \ (a)V ,
– (a1)V = (a)V .

We shall say that V is balanced iff for all terms a, either (a)V = ∅, or (a)V = W ,
or (a)V is infinite and coinfinite. An interpretation is a subset I of AF . A model
is a structure M = (W,R, V, I) where F = (W,R) is a frame, V is a valuation
based on F and I is an interpretation. The satisfiability of a formula φ in M, in
symbols M |= φ, is defined as follows:
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– M |= X iff X ∈ I,
– M �|= ⊥,
– M |= ¬φ iff M �|= φ,
– M |= φ ∨ ψ iff either M |= φ, or M |= ψ,
– M |= C(a, b) iff ((a)V × (b)V ) ∩ R �= ∅,
– M |= a ≡ b iff (a)V = (b)V .

As a result,

– M |= C̄(a, b) iff ((a)V × (b)V ) ∩ R = ∅,
– M |= a �≡ b iff (a)V �= (b)V ,
– M |= a ≤ b iff (a)V ⊆ (b)V .

Let F be a frame. A formula φ is valid in F , in symbols F |= φ, iff for all models
M based on F , M |= φ. A set Γ of formulas is valid in F , in symbols F |= Γ ,
iff for all formulas φ ∈ Γ , F |= φ. Let CF be a class of frames. A formula φ is
valid in CF , in symbols CF |= φ, iff for all frames F in CF , F |= φ. Let CF 0 be
the class of all frames. Obviously,

Proposition 1. The following formulas are valid in CF 0:

– C(x, y) → x �≡ 0,
– C(x, y) → y �≡ 0,
– C(x, y) ∧ x ≤ z → C(z, y),
– C(x, y) ∧ y ≤ z → C(x, z),
– C(x � y, z) → C(x, z) ∨ C(y, z),
– C(x, y � z) → C(x, y) ∨ C(x, z).

In this paper, we will consider the following classes of frames:

– the class CF r of all reflexive frames,
– the class CF s of all symmetrical frames.

Obviously,

Proposition 2. The following formula is valid in CF r:

– x �≡ 0 → C(x, x).

The following formula is valid in CF s:

– C(x, y) → C(y, x).

3 Axiomatization and Decidability of Contact Logics

In this section, we present the axiomatization and the decidability of contact
logics. From now on, formulas will also be called “axioms” and pairs of the form
(Γ, φ) where Γ is a finite set of formulas and φ is a formula will also be called
“inference rules”. When an axiom or an inference rule contains no occurrence
of atomic formulas, it is qualified as “weak”. An axiomatic system consists of a
collection of axioms and a collection of inference rules. Let λ0 be the axiomatic
system consisting of
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– a complete set of axioms for Classical Propositional Calculus (i.e. X → (Y →
X), (X → (Y → Z)) → ((X → Y ) → (X → Z)), etc.),

– a complete set of axioms for non-degenerate Boolean algebras (i.e. x�(y�z) ≡
(x � y) � z, x � y ≡ y � x, etc.),

– the following axioms:
• C(x, y) → x �≡ 0,
• C(x, y) → y �≡ 0,
• C(x, y) ∧ x ≤ z → C(z, y),
• C(x, y) ∧ y ≤ z → C(x, z),
• C(x � y, z) → C(x, z) ∨ C(y, z),
• C(x, y � z) → C(x, y) ∨ C(x, z),

– the inference rule of modus ponens (i.e. ({X,X → Y }, Y )).

We will consider extensions of λ0 — denoted λ, μ, etc. — by either adding new
axioms, or adding new inference rules. The extension of λ0 with a set A of axioms
will be denoted λ0(A). The extension of λ0 with a single axiom φ will be denoted
λ0(φ). In this paper, we will consider the following extensions of λ0:

– λr = λ0(x �≡ 0 → C(x, x)),
– λs = λ0(C(x, y) → C(y, x)).

The extension of λ0 with a single inference rule (Γ, φ) will be denoted λ0+(Γ, φ).
A formula φ is said to be derivable in an extension λ of λ0 from a finite set Γ
of formulas, in symbols Γ �λ φ, iff there exists a finite sequence φ0, . . . , φm of
formulas such that φm = φ and for all nonnegative integers i, if i ≤ m, then at
least one of the following conditions holds:

– φi ∈ Γ ,
– there exists an axiom ψ in λ and there exists a substitution s such that

φi = s(ψ),
– there exists an inference rule (Δ,ψ) in λ and there exists a substitution s such

that φi = s(ψ) and {φ0, . . . , φi−1} ⊇ s(Δ).

The finite sequence φ0, . . . , φm is called “derivation of φ in λ from Γ”. The
propositions below contain facts which can be found in most elementary logic
texts.

Proposition 3. Let Γ be a finite set of formulas and φ be a formula. If Γ �λ φ,
then for all substitutions s, s(Γ ) �λ s(φ).

Proposition 4. Let Γ be a finite set of formulas and φ, ψ be formulas. The
following conditions are equivalent:

– Γ ∪ {φ} �λ ψ,
– Γ �λ φ → ψ.

A formula φ is said to be provable in λ, in symbols �λ φ, iff ∅ �λ φ. In this
case, every derivation of φ in λ from ∅ is called “proof of φ in λ”. The provable
formulas of λ will be called “theorems of λ”. We will denote by Th(λ) the set of
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all theorems of λ. We shall say that λ is consistent iff ⊥ �∈ Th(λ). We will denote
by CF (λ) the class of all frames F such that F |= Th(λ) and we will denote
by CFfin(λ) the class of all finite frames F such that F |= Th(λ). We shall say
that λ is balanced iff for all formulas φ, the following conditions are equivalent:

– φ �∈ Th(λ),
– there exists a countable frame F ∈ CF (λ), there exists a balanced valuation

V on F and there exists an interpretation I such that (F , V, I) �|= φ.

λ0 itself is balanced, but also most extensions of λ0 considered in [5,17] like
λr and λs are balanced. In [5,17], one can also find the facts contained in the
following

Proposition 5. Let φ be a formula. The following conditions are equivalent:

– φ ∈ Th(λ0),
– CF 0 |= φ.

Proposition 6. Let φ be a formula. The following conditions are equivalent:

– φ ∈ Th(λr),
– CF r |= φ.

The following conditions are equivalent:

– φ ∈ Th(λs),
– CF s |= φ.

More generally,

Proposition 7. Let φ be a formula. If there exists a finite set A of axioms such
that λ = λ0(A), then the following conditions are equivalent:

– φ ∈ Th(λ),
– CF (λ) |= φ,
– CFfin(λ) |= φ.

A consequence of Proposition 7 is the following

Proposition 8. If there exists a finite set A of axioms such that λ = λ0(A),
then Th(λ) is decidable.

Later on, we will use Propositions 3–8 without explicit reference.

4 Admissibility: Definitions

Let λ be an extension of λ0. An inference rule (Γ, φ) is said to be admissible
in λ iff for all substitutions s, if s(Γ ) ⊆ Th(λ), then s(φ) ∈ Th(λ). The next
proposition indicates that inference rules admissible in λ do not increase Th(λ)
when added to λ.
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Proposition 9. Let (Γ, φ) be an inference rule. If (Γ, φ) is admissible in λ, then
Th(λ + (Γ, φ)) = Th(λ).

Proof. Suppose (Γ, φ) is admissible in λ. If Th(λ + (Γ, φ)) �= Th(λ), then obvi-
ously, there exists a formula ψ such that ψ ∈ Th(λ + (Γ, φ)) and ψ �∈ Th(λ).
Hence, there exists a proof ψ0, . . . , ψm of ψ in λ+(Γ, φ). Since (Γ, φ) is admissible
in λ, each use of (Γ, φ) in ψ0, . . . , ψm can be replaced by a corresponding proof
in λ. Thus, there exists a proof of ψ in λ. Therefore, ψ ∈ Th(λ): a contradiction.

Inference rules that are admissible in λ can be used to improve the performance of
any algorithm that handles λ-provability. In this respect, the following decision
problem, called “admissibility problem in λ”, in symbols ADM(λ), is of the
utmost importance:

– input: an inference rule (Γ, φ),
– output: determine whether (Γ, φ) is admissible in λ.

Applicability of inference rules that are admissible in λ to ameliorate algorithms
for λ-provability incites us to study the decidability of ADM(λ). To start this
study, let us first define the notion of derivability in λ. We shall say that an
inference rule (Γ, φ) is derivable in λ iff Γ �λ φ. It happens that derivability is
a special case of admissibility.

Proposition 10. Let (Γ, φ) be an inference rule. If (Γ, φ) is derivable in λ, then
(Γ, φ) is admissible in λ.

Proof. Suppose (Γ, φ) is derivable in λ. If (Γ, φ) is not admissible in λ, then
there exists a substitution s such that s(Γ ) ⊆ Th(λ) and s(φ) �∈ Th(λ). Since
(Γ, φ) is derivable in λ, Γ �λ φ. Hence, s(Γ ) �λ s(φ). Thus, there exists a
derivation φ0, . . . , φm of s(φ) in λ from s(Γ ). Since s(Γ ) ⊆ Th(λ), each use of
s(Γ ) in φ0, . . . , φm can be replaced by a corresponding proof in λ. Therefore,
there exists a proof of s(φ) in λ. Consequently, s(φ) ∈ Th(λ): a contradiction.

Nevertheless, in the general case, it may happen that derivability and admis-
sibility in such-or-such contact logic do not coincide. It suffices, for instance,
to consider the inference rule ({C(x, y)}, C(y, x)). Since for all substitutions s,
s(C(x, y)) �∈ Th(λ0), ({C(x, y)}, C(y, x)) is admissible in λ0. Since C(x, y) →
C(y, x) �∈ Th(λ0), ({C(x, y)}, C(y, x)) is not derivable in λ0. As a result, the fol-
lowing decision problem, called “derivability problem in λ”, in symbols DER(λ),
has its importance:

– input: an inference rule (Γ, φ),
– output: determine whether (Γ, φ) is derivable in λ.

Obviously,

Proposition 11. If there exists a finite set A of axioms such that λ = λ0(A),
then DER(λ) is decidable.
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We shall say that λ is structurally complete iff for all inference rules (Γ, φ), if
(Γ, φ) is admissible in λ, (Γ, φ) is derivable in λ. By Propositions 10 and 11,

Proposition 12. If λ is structurally complete and there exists a finite set A of
axioms such that λ = λ0(A), then ADM(λ) is decidable.

Now, we intend to extend Proposition 12 to structurally incomplete extensions
of λ0. However, in this paper, we will only be able to study the decidability
of the following decision problem, called “weak admissibility problem in λ”, in
symbols wADM(λ):

– input: a weak inference rule (Γ, φ),
– output: determine whether (Γ, φ) is admissible in λ.

We end this section with the following

Proposition 13. Let (Γ (x1, . . . , xn), φ(x1, . . . , xn)) be a weak inference rule.
The following conditions are equivalent:

– (Γ (x1, . . . , xn), φ(x1, . . . , xn)) is not admissible in λ,
– there exists terms a1, . . . , an such that Γ (a1, . . . , an) ⊆ Th(λ) and φ(a1, . . . ,

an) �∈ Th(λ).

Proof. (⇒) Suppose (Γ (x1, . . . , xn), φ(x1, . . . , xn)) is not admissible in λ. Hence,
there exists a substitution s such that s(Γ (x1, . . . , xn)) ⊆ Th(λ) and s(φ(x1, . . . ,
xn)) �∈ Th(λ). Let a1, . . . , an be terms such that for all positive integers i, if i ≤ n,
then ai = s(xi). Since s(Γ (x1, . . . , xn)) ⊆ Th(λ) and s(φ(x1, . . . , xn)) �∈ Th(λ),
Γ (a1, . . . , an) ⊆ Th(λ) and φ(a1, . . . , an) �∈ Th(λ).
(⇐) Suppose there exists terms a1, . . . , an such that Γ (a1, . . . , an) ⊆ Th(λ)
and φ(a1, . . . , an) �∈ Th(λ). Let s be a substitution such that for all posi-
tive integers i, if i ≤ n, then s(xi) = ai. Since Γ (a1, . . . , an) ⊆ Th(λ) and
φ(a1, . . . , an) �∈ Th(λ), s(Γ (x1, . . . , xn)) ⊆ Th(λ) and s(φ(x1, . . . , xn)) �∈ Th(λ).
Hence, (Γ (x1, . . . , xn), φ(x1, . . . , xn)) is not admissible in λ.

5 Admissibility: Useful Lemmas

Let λ be an extension of λ0. The decidability of wADM(λ) is difficult to establish
and we defer proving it till next section. In the meantime, we present useful
lemmas. Let n be a nonnegative integer. Let Φn be the set of all weak formulas
with atomic terms in x1, . . . , xn. We define on Φn the equivalence relation ≡n

λ

as follows:

– φ(x1, . . . , xn) ≡n
λ ψ(x1, . . . , xn) iff φ(x1, . . . , xn) ↔ ψ(x1, . . . , xn) ∈ Th(λ).

Obviously, considered as formulas in classical propositional logic, the terms
a(x1, . . . , xn) and b(x1, . . . , xn) are equivalent iff mon(a(x1, . . . , xn)) = mon
(b(x1, . . . , xn)). Hence, there exists exactly 22

n

pairwise non-equivalent terms
in x1, . . . , xn. Since each weak formula φ(x1, . . . , xn) in Φn is a Boolean combi-
nation of elementary formulas of the form C(a(x1, . . . , xn), b(x1, . . . , xn)) or of
the form a(x1, . . . , xn) ≡ b(x1, . . . , xn),
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Lemma 1. ≡n
λ has finitely many equivalence classes on Φn.

Let An be the set of all n-tuples of terms. Note that n-tuples of terms in
An may contain occurrences of atomic terms distinct from x1, . . ., xn. Given
(a1, . . . , an) ∈ An, a frame F ∈ CF (λ) and a valuation V on F , let

– ΦF,V
(a1,...,an)

be the set of all C-free weak formulas φ(x1, . . . , xn) such that
(F , V ) |= φ(a1, . . . , an).

Consider a complete list φ1(x1, . . . , xn), . . . , φk(x1, . . . , xn) in ΦF,V
(a1,...,an)

of rep-

resentatives for each equivalence class on ΦF,V
(a1,...,an)

modulo ≡n
λ and define

– φF,V
(a1,...,an)

(x1, . . . , xn) = φ1(x1, . . . , xn) ∧ . . . ∧ φk(x1, . . . , xn).

Obviously,

Lemma 2. (F , V ) |= φF,V
(a1,...,an)

(a1, . . . , an).

Hence, φF,V
(a1,...,an)

(x1, . . . , xn) is in ΦF,V
(a1,...,an)

. Let

– Φa1,...,an
= {φF,V

(a1,...,an)
(x1, . . . , xn): F ∈ CF (λ) and V is a valuation on F}.

Consider a complete list ψ1(x1, . . . , xn), . . . , ψl(x1, . . . , xn) in Φ(a1,...,an) of rep-
resentatives for each equivalence class on Φ(a1,...,an) modulo ≡n

λ and define

– ψ(a1,...,an)(x1, . . . , xn) = ψ1(x1, . . . , xn) ∨ . . . ∨ ψl(x1, . . . , xn).

We have the

Lemma 3. ψ(a1,...,an)(a1, . . . , an) ∈ Th(λ).

Proof. Suppose ψ(a1,...,an)(a1, . . . , an) �∈ Th(λ). Thus, there exists a frame F ∈
CF (λ) and there exists a valuation V on F such that (F , V ) �|= ψ(a1,...,an)(a1,
. . ., an). Let i be a positive integer such that 1 ≤ i ≤ l and φF,V

(a1,...,an)
(x1,

. . . , xn) is equivalent to ψi(x1, . . . , xn) modulo ≡n
λ. Since F |= Th(λ) and, by

Lemma 2, (F , V ) |= φF,V
(a1,...,an)

(a1, . . . , an), (F , V ) |= ψi(a1, . . . , an). Therefore,
(F , V ) |= ψ(a1,...,an)(a1, . . . , an): a contradiction.

Moreover,

Lemma 4. For all C-free weak formulas φ(x1, . . . , xn), the following conditions
are equivalent:

– φ(a1, . . . , an) ∈ Th(λ),
– ψ(a1,...,an)(x1, . . . , xn) → φ(x1, . . . , xn) ∈ Th(λ).

Proof. (⇒) Suppose φ(a1, . . . , an) ∈ Th(λ). If ψ(a1,...,an)(x1, . . . , xn) → φ(x1,
. . . , xn) �∈ Th(λ), then there exists a frame F ∈ CF (λ) and there exists a
valuation V on F such that (F , V ) �|= ψ(a1,...,an)(x1, . . . , xn) → φ(x1, . . . , xn).
Hence, (F , V ) |= ψ(a1,...,an)(x1, . . . , xn) and (F , V ) �|= φ(x1, . . . , xn). Thus, there
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exists a positive integer i such that i ≤ l and (F , V ) |= ψi(x1, . . . , xn). Let F ′ ∈
CF (λ) be a frame and V ′ be a valuation on F ′ such that φF ′,V ′

(a1,...,an)
(x1, . . . , xn)

is equivalent to ψi(x1, . . . , xn) modulo ≡n
λ. Since (F , V ) |= Th(λ) and (F , V ) |=

ψi(x1, . . . , xn), (F , V ) |= φF ′,V ′

(a1,...,an)
(x1, . . . , xn). Therefore, for all C-free weak

formulas θ(x1, . . . , xn), if (F ′, V ′) |= θ(a1, . . . , an), then (F , V ) |= θ(x1, . . . , xn).
Since F ′ |= Th(λ) and φ(a1, . . . , an) ∈ Th(λ), (F ′, V ′) |= φ(a1, . . . , an). Since for
all C-free weak formulas θ(x1, . . . , xn), if (F ′, V ′) |= θ(a1, . . . , an), then (F , V ) |=
θ(x1, . . . , xn), (F , V ) |= φ(x1, . . . , xn): a contradiction.
(⇐) Suppose ψ(a1,...,an)(x1, . . . , xn) → φ(x1, . . . , xn) ∈ Th(λ). Consequently,
ψ(a1,...,an)(a1, . . . , an) → φ(a1, . . . , an) ∈ Th(λ). By Lemma 3, ψ(a1,...,an)(a1, . . . ,
an) ∈ Th(λ). Since ψ(a1,...,an)(a1, . . . , an) → φ(a1, . . . , an) ∈ Th(λ), φ(a1, . . . ,
an) ∈ Th(λ).

We define on An the equivalence relation ∼=n
λ as follows:

– (a1, . . . , an) ∼=n
λ (b1, . . . , bn) iff for all weak formulas φ(x1, . . . , xn) in Φn,

φ(a1, . . . , an) ∈ Th(λ) iff φ(b1, . . . , bn) ∈ Th(λ).

By Lemma 1,

Lemma 5. ∼=n
λ has finitely many equivalence classes on An.

It is of interest to consider the equivalence relation ∼=n
λ, seeing that, according

to our definitions,

Lemma 6. If (a1, . . . , an) ∼=n
λ (b1, . . . , bn), then for all weak inference rules

(Γ (x1, . . . , xn), φ(x1, . . . , xn)), the following conditions are equivalent:

– Γ (a1, . . . , an) ⊆ Th(λ) and φ(a1, . . . , an) �∈ Th(λ),
– Γ (b1, . . . , bn) ⊆ Th(λ) and φ(b1, . . . , bn) �∈ Th(λ).

Now, we define on An the equivalence relation �n
λ as follows:

– (a1, . . . , an) �n
λ (b1, . . . , bn) iff for all C-free weak formulas φ(x1, . . . , xn) in

Φn, φ(a1, . . . , an) ∈ Th(λ) iff φ(b1, . . . , bn) ∈ Th(λ).

Obviously,

Lemma 7. If (a1, . . . , an) ∼=n
λ (b1, . . . , bn), then (a1, . . . , an) �n

λ (b1, . . . , bn).

Moreover, by Lemma 1,

Lemma 8. �n
λ has finitely many equivalence classes on An.

The key things to note about the equivalence relations ∼=n
λ and �n

λ are contained
in the following lemmas.

Lemma 9. The following conditions are equivalent:

– (a1, . . . , an) �n
λ (b1, . . . , bn),

– ψ(a1,...,an)(x1, . . . , xn) ↔ ψ(b1,...,bn)(x1, . . . , xn) ∈ Th(λ).
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Proof. (⇒) Suppose (a1, . . . , an) �n
λ (b1, . . . , bn). If ψ(a1,...,an)(x1, . . . , xn) ↔

ψ(b1,...,bn)(x1, . . . , xn) �∈ Th(λ), then either ψ(a1,...,an)(x1, . . ., xn) → ψ(b1,...,bn)

(x1, . . ., xn) �∈ Th(λ), or ψ(b1,...,bn)(x1, . . . , xn) → ψ(a1,...,an)(x1, . . . , xn) �∈
Th(λ). Without loss of generality, let us assume that ψ(a1,...,an)(x1, . . . , xn)
→ ψ(b1,...,bn)(x1, . . . , xn) �∈ Th(λ). By Lemma 4, ψ(b1,...,bn)(a1, . . . , an) �∈ Th(λ).
Since (a1, . . . , an) �n

λ (b1, . . . , bn), ψ(b1,...,bn)(b1, . . . , bn) �∈ Th(λ). By Lemma 3,
ψ(b1,...,bn)(b1, . . . , bn) ∈ Th(λ): a contradiction.
(⇐) Suppose ψ(a1,...,an)(x1, . . . , xn) ↔ ψ(b1,...,bn)(x1, . . . , xn) ∈ Th(λ). Hence,
for all C-free weak formulas φ(x1, . . . , xn), ψ(a1,...,an)(x1, . . . , xn) → φ(x1, . . . ,
xn) ∈ Th(λ) iff ψ(b1,...,bn)(x1, . . . , xn) → φ(x1, . . . , xn) ∈ Th(λ). By Lemma 4,
for all C-free weak formulas φ(x1, . . . , xn), φ(a1, . . . , an) ∈ Th(λ) iff φ(b1, . . . , bn)
∈ Th(λ). Thus, (a1, . . . , an) �n

λ (b1, . . . , bn).

Lemma 10. If λ is balanced and (a1, . . . , an) �n
λ (b1, . . . , bn), then (a1, . . . , an)

∼=n
λ (b1, . . . , bn).

Proof. Suppose λ is balanced and (a1, . . . , an) �n
λ (b1, . . . , bn). If (a1, . . . , an) �∼=n

λ

(b1, . . . , bn), then there exists a weak formula φ(x1, . . . , xn) in Φn such that
φ(a1, . . . , an) ∈ Th(λ) not-iff φ(b1, . . . , bn) ∈ Th(λ). Without loss of general-
ity, let us assume that φ(a1, . . . , an) ∈ Th(λ) and φ(b1, . . . , bn) �∈ Th(λ). Since
λ is balanced, there exists a countable frame F ∈ CF (λ) and there exists a
balanced valuation V on F such that (F , V ) �|= φ(b1, . . . , bn). By Lemma 2,
(F , V )|=φF,V

(b1,...,bn)
(b1, . . . , bn). Since F |= Th(λ), ¬φF,V

(b1,...,bn)
(b1, . . . , bn) �∈ Th(λ).

Since (a1, . . . , an) �n
λ (b1, . . . , bn), ¬φF,V

(b1,...,bn)
(a1, . . . , an) �∈ Th(λ). Since λ is

balanced, there exists a countable frame F ′ ∈ CF (λ) and there exists a bal-
anced valuation V ′ on F ′ such that (F ′, V ′) |= φF,V

(b1,...,bn)
(a1, . . . , an). Suppose

F = (W,R) and F ′ = (W ′, R′). Now, consider (ε1, . . . , εn) ∈ {0, 1}n. If (bε1
1 �. . .�

bεn
n )V = ∅, then (F , V ) |= bε1

1 �. . .�bεn
n ≡ 0. Hence, φF,V

(b1,...,bn)
(x1, . . . , xn) → xε1

1 �
. . . � xεn

n ≡ 0 ∈ Th(λ). Since F ′ |= Th(λ) and (F ′, V ′) |= φF,V
(b1,...,bn)

(a1, . . . , an),

(F ′, V ′) |= aε1
1 � . . .�aεn

n ≡ 0. Thus, (aε1
1 � . . .�aεn

n )V ′
= ∅. Similarly, the reader

may easily verify that if (bε1
1 � . . .�bεn

n )V = W , then (aε1
1 � . . .�aεn

n )V ′
= W ′ and

if (bε1
1 � . . .�bεn

n )V is infinite and coinfinite, then (aε1
1 � . . .�aεn

n )V ′
is infinite and

coinfinite. In all cases, there exists a bijection f(ε1,...,εn) from (bε1
1 � . . .� bεn

n )V to
(aε1

1 � . . .�aεn
n )V ′

. Let f be the union of all f(ε1,...,εn) when (ε1, . . . , εn) describes
{0, 1}n. The reader may easily verify that f is a bijection from W to W ′ such
that for all u ∈ W and for all (ε1, . . . , εn) ∈ {0, 1}n, u ∈ (bε1

1 � . . . � bεn
n )V iff

f(u) ∈ (aε1
1 � . . .�aεn

n )V ′
. Let R′

f be the binary relation on W ′ defined by u′R′
fv′

iff f−1(u′)Rf−1(v′). We define F ′
f = (W ′, R′

f ). Obviously, f is an isomorphism
from F to F ′

f . Since F |= Th(λ), F ′
f |= Th(λ). Since φ(a1, . . . , an) ∈ Th(λ),

(F ′
f , V ′) |= φ(a1, . . . , an). Therefore, (F , V ) |= φ(b1, . . . , bn): a contradiction.

6 Admissibility: Decidability

Let λ be an extension of λ0. By Proposition 13 and Lemmas 5–8 and 10, wADM(λ)
would be decidable if λ is balanced, Th(λ) is decidable and a complete set of
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representatives for each class on An modulo �n
λ could be computed. Let k be

a nonnegative integer. Given (a1(z1, . . . , zk), . . . , an(z1, . . . , zk)) ∈ An, we define
on {0, 1}k the equivalence relation ∼k

(a1,...,an)
as follows:

– (ε1, . . . , εk) ∼k
(a1,...,an)

(ε′
1, . . . , ε

′
k) iff for all positive integers i, if i ≤ n, then

zε1
1 � . . . � zεk

k ∈ mon(ai(z1, . . . , zk)) iff z
ε′
1

1 � . . . � z
ε′
k

k ∈ mon(ai(z1, . . . , zk)).

Obviously,

Lemma 11. ∼k
(a1,...,an)

has at most 2n equivalence classes on {0, 1}k.

Hence, there exists a one-to-one function f assigning to each equivalence class
| (ε1, . . . , εk) |∼k

(a1,...,an)
an n-tuple f(| (ε1, . . . , εk) |∼k

(a1,...,an)
) ∈ {0, 1}n. By

means of the one-to-one function f , for all positive integers i, if i ≤ n, then we
define the term bi(x1, . . . , xn) as follows:

– bi(x1, . . . , xn) =
⊔{x

ε′
1
1 � . . . � x

ε′
n

n : zε1
1 � . . . � zεk

k ∈ mon(ai(z1, . . . , zk)) and
f(| (ε1, . . . , εk) |∼k

(a1,...,an)
) = (ε′

1, . . . , ε
′
n)}.

Given a nonempty set W , the reader may easily verify the following

Lemma 12. – for all valuations V on W , there exists a valuation V ′ on
W such that for all positive integers i, if i ≤ n, then (ai(z1, . . . , zk))V =
(bi(x1, . . . , xn))V ′

,
– for all valuations V on W , there exists a valuation V ′ on W such that for

all positive integers i, if i ≤ n, then (bi(x1, . . . , xn))V = (ai(z1, . . . , zk))V ′
.

The key thing to note about the terms bi(x1, . . . , xn), . . . , bi(x1, . . . , xn) is con-
tained in the following

Lemma 13. (a1(z1, . . . , zk), . . . , an(z1, . . . , zk)) �n
λ (b1(x1, . . . , xn), . . . , bn(x1,

. . . , xn)).

Proof. Suppose (a1(z1, . . . , zk), . . . , an(z1, . . . , zk)) ��n
λ (b1(x1, . . . , xn), . . ., bn

(x1, . . . , xn)). Hence, there exists a C-free weak formula φ(y1, . . . , yn) in Φn

such that φ(a1(z1, . . . , zk), . . . , an(z1, . . . , zk)) ∈ Th(λ) not-iff φ(b1(x1, . . . , xn),
. . . , bn(x1, . . . , xn)) ∈ Th(λ). Thus, we have to consider the following two cases.
Case φ(a1(z1, . . . , zk), . . . , an(z1, . . . , zk)) ∈ Th(λ) and φ(b1(x1, . . . , xn), . . . ,
bn(x1, . . . , xn)) �∈ Th(λ). Hence, there exists a frame F ∈ CF (λ) and there exists
a valuation V on F such that (F , V ) �|= φ(b1(x1, . . . , xn), . . . , bn(x1, . . . , xn)).
By Lemma 12, there exists a valuation V ′ on F such that for all positive inte-
gers i, if i ≤ n, then (bi(x1, . . . , xn))V = (ai(z1, . . . , zk))V ′

. Since (F , V ) �|=
φ(b1(x1, . . . , xn), . . . , bn(x1, . . . , xn)), (F , V ′) �|= φ(a1(z1, . . . , zk), . . . , an(z1, . . . ,
zk)). Thus, F �|= φ(a1(z1, . . . , zk), . . . , an(z1, . . . , zk)). Since F ∈ CF (λ), φ(a1

(z1, . . . , zk), . . . , an(z1, . . . , zk)) �∈ Th(λ): a contradiction.
Case φ(a1(z1, . . . , zk), . . . , an(z1, . . . , zk)) �∈ Th(λ) and φ(b1(x1, . . . , xn), . . . ,
bn(x1, . . . , xn)) ∈ Th(λ). Similar to the case φ(a1(z1, . . . , zk), . . . , an(z1, . . . , zk))
∈ Th(λ) and φ(b1(x1, . . . , xn), . . . , bn(x1, . . . , xn)) �∈ Th(λ).
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By means of the lemmas presented above, let us prove the following

Proposition 14. A complete set of representatives for each class on An modulo
�n

λ can be computed.

Proof. By Lemma 13, the set of all n-tuples of terms on {x1, . . . , xn} constitutes a
complete set of representatives for each class on An modulo �n

λ. Since there exists
exactly 22

n

pairwise non-equivalent terms of the form b(x1, . . . , xn), a complete
set of representatives for each class on An modulo �n

λ can be computed.

As a result,

Proposition 15. If λ is balanced and there exists a finite set A of axioms such
that λ = λ0(A), then wADM(λ) is decidable.

Proof. Suppose λ is balanced and there exists a finite set A of axioms such
that λ = λ0(A). We define an algorithm taking as input a weak inference rule
(Γ (x1, . . . , xn), φ(x1, . . . , xn)) and returning the value true iff (Γ (x1, . . . , xn),
φ(x1, . . . , xn)) is admissible in λ as follows:

– compute a complete set {(a1
1, . . . , a

1
n), . . . , (aN

1 , . . . , aN
n )} of representatives for

each class on An modulo �n
λ;

– if there exists a positive integer k such that k ≤ N , Γ (ak
1 , . . . , a

k
n) ⊆ Th(λ)

and φ(ak
1 , . . . , a

k
n) �∈ Th(λ) then return false else return true.

By Propositions 13 and 14 and Lemmas 5–8 and 10, this algorithm is sound and
complete with respect to wADM(λ) and can be executed.

However, the exact complexity of wADM(λ) is not known.

7 Unifiability

Let λ be an extension of λ0. A formula φ is said to be unifiable in λ iff there
exists a substitution s such that s(φ) ∈ Th(λ). It happens that if λ is consistent,
then unifiability is a special case of admissibility.

Proposition 16. Let φ be a formula. If λ is consistent, then the following con-
ditions are equivalent:

– φ is unifiable in λ,
– ({φ},⊥) is not admissible in λ.

Proof. Suppose λ is consistent.
(⇒) Suppose φ is unifiable in λ. If ({φ},⊥) is admissible in λ, then for all
substitutions s, if s(φ) ∈ Th(λ), then ⊥ ∈ Th(λ). Since λ is consistent, ⊥ �∈
Th(λ). Since for all substitutions s, if s(φ) ∈ Th(λ), then ⊥ ∈ Th(λ), for all
substitutions s, s(φ) �∈ Th(λ). Hence, φ is not unifiable in λ: a contradiction.
(⇐) Suppose ({φ},⊥) is not admissible in λ. Hence, there exists a substitution
s such that s(φ) ∈ Th(λ). Thus, φ is unifiable in λ.
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Now, let us consider the following decision problem, called “weak unifiability
problem in λ”, in symbols wUNI(λ):

– input: a weak formula φ,
– output: determine whether φ is unifiable in λ.

Lemma 14. For all weak formulas φ(x1, . . . , xn), the following conditions are
equivalent:

– φ is unifiable in λ,
– there exists (ε1, . . . , εn) ∈ {0, 1}n such that φ(ε1, . . . , εn) ∈ Th(λ).

Proof. (⇒) Suppose φ(x1, . . . , xn) is unifiable in λ. Hence, there exists a substi-
tution s such that s(φ(x1, . . . , xn)) ∈ Th(λ). Let t be a ground substitution. Since
s(φ(x1, . . . , xn)) ∈ Th(λ), t(s(φ(x1, . . . , xn))) ∈ Th(λ). Let (ε1, . . . , εn) ∈ {0, 1}n

be obtained from (t(s(x1)), . . . , t(s(xn))) by applying ordinary reasoning in non-
degenerate Boolean algebras. Since t(s(φ(x1, . . . , xn))) ∈ Th(λ), φ(ε1, . . . , εn) ∈
Th(λ).
(⇐) Suppose there exists (ε1, . . . , εn) ∈ {0, 1}n such that φ(ε1, . . . , εn) ∈ Th(λ).
Let s be a substitution such that for all positive integers i, if i ≤ n, then s(xi) = εi.
Since φ(ε1, . . . , εn) ∈ Th(λ), s(φ(x1, . . . , xn)) ∈ Th(λ). Thus, φ is unifiable in λ.

Hence, it is easy to check that when Th(λ) is decidable, wUNI(λ) is decidable.
Now, remark that for all weak formulas φ(x1, . . . , xn) and for all (ε1, . . . , εn) ∈
{0, 1}n, φ(ε1, . . . , εn) is equivalent modulo ≡n

λ to one of the following elementary
formulas: ⊥, 	, C(1, 1), C̄(1, 1). Moreover, even when Th(λ) is undecidable, the
elementary formula in {⊥,	, C(1, 1), C̄(1, 1)} that is equivalent modulo ≡n

λ to
φ(ε1, . . . , εn) in λ can be computed. As a result, in all cases, i.e. whatever is the
decidability status of Th(λ),

Proposition 17. wUNI(λ) is decidable.

Remark that the elementary formula in {⊥,	, C(1, 1), C̄(1, 1)} that is equivalent
modulo ≡n

λ to φ(ε1, . . . , εn) in λ can be computed in linear time. As a result,

Proposition 18. wUNI(λ) is in NP .

It happens that if λ is consistent, then the satisfiability problem in Boolean Logic
is reducible to wUNI(λ).

Proposition 19. Let a(x1, . . . , xn) be a term. If λ is consistent, then the fol-
lowing conditions are equivalent:

– a(x1, . . . , xn) is satisfiable in Boolean Logic,
– a(x1, . . . , xn) ≡ 1 is unifiable in λ.

Proof. Suppose λ is consistent.
(⇒) Suppose a(x1, . . . , xn) is satisfiable in Boolean Logic. Hence, there exists
(ε1, . . . , εn) ∈ {0, 1}n such that a(ε1, . . . , εn) is equivalent to 1 in Boolean Logic.
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Thus, a(ε1, . . . , εn) ≡ 1 ∈ Th(λ). Let s be a substitution such that for all pos-
itive integers i, if i ≤ n, then s(xi) = εi. Since a(ε1, . . . , εn) ≡ 1 ∈ Th(λ),
s(a(x1, . . . , xn) ≡ 1) ∈ Th(λ). Therefore, a(x1, . . . , xn) ≡ 1 is unifiable in λ.
(⇐) Suppose a(x1, . . . , xn) ≡ 1 is unifiable in λ. Hence, there exists a substi-
tution s such that s(a(x1, . . . , xn) ≡ 1) ∈ Th(λ). Let t be a ground substitu-
tion. Since s(a(x1, . . . , xn) ≡ 1) ∈ Th(λ), t(s(a(x1, . . . , xn) ≡ 1)) ∈ Th(λ). Let
(ε1, . . . , εn) ∈ {0, 1}n be obtained from (t(s(x1)), . . . , t(s(xn))) by applying ordi-
nary reasoning in Boolean Logic. If a(x1, . . . , xn) is not satisfiable in Boolean
Logic, then a(ε1, . . . , εn) is equivalent to 0 in Boolean Logic. Since λ is consis-
tent, ⊥ �∈ Th(λ). Thus, there exists a frame F ∈ CF (λ). Let V be a valuation
on F such that for all positive integers i, if i ≤ n, then

– if t(s(xi)) is equivalent to 0 in Boolean Logic, then V (xi) = ∅,
– if t(s(xi)) is equivalent to 1 in Boolean Logic, then V (xi) = W .

Therefore, for all positive integers i, if i ≤ n, then V (xi) = (t(s(xi)))V . Since
a(ε1, . . . , εn) is equivalent to 0 in Boolean Logic, (F , V ) �|= t(s(a(x1, . . . , xn) ≡
1)). Since F ∈ CF (λ), t(s(a(x1, . . . , xn) ≡ 1)) �∈ Th(λ) a contradiction.

As a result,

Proposition 20. If λ is consistent, then wUNI(λ) is NP -hard.

Now, we give a syntactic result for unifiability and non-unifiability of a weak
formula in λ.

Proposition 21. Let φ(x1, . . . , xn) be a weak formula. If λ is consistent and
C(1, 1) ∈ Th(λ), then the following conditions are equivalent:

– φ(x1, . . . , xn) is not unifiable in λ,
– φ(x1, . . . , xn) → ∨{xi �≡ 0 ∧ xi �≡ 1: 1 ≤ i ≤ n} ∈ Th(λ).

Proof. Suppose λ is consistent and C(1, 1) ∈ Th(λ).

(⇒) Suppose φ(x1, . . . , xn) is not unifiable in λ. If φ(x1, . . . , xn) → ∨{xi �≡
0 ∧ xi �≡ 1: 1 ≤ i ≤ n} �∈ Th(λ), then there exists a frame F ∈ CF (λ) and there
exists a valuation V on F such that (F , V ) �|= φ(x1, . . . , xn) → ∨{xi �≡ 0∧xi �≡ 1:
1 ≤ i ≤ n}. Hence, (F , V ) |= φ(x1, . . . , xn) and (F , V ) �|= ∨{xi �≡ 0 ∧ xi �≡ 1:
1 ≤ i ≤ n}. Suppose F = (W,R). Thus, for all positive integers i, if i ≤ n, then
either V (xi) = ∅, or V (xi) = W . Let s be a substitution such that for all positive
integers i, if i ≤ n, then

– if V (xi) = ∅, then s(xi) = 0,
– if V (xi) = W , then s(xi) = 1.

Therefore, for all positive integers i, if i ≤ n, then V (xi) = (s(xi))V Since
(F , V ) |= φ(x1, . . . , xn), (F , V ) |= φ(s(x1), . . . , s(xn)). Since for all positive inte-
gers i, if i ≤ n, then s(xi) is either equal to 0, or equal to 1, φ(s(x1), . . . , s(xn)) is
equivalent modulo ≡n

λ to an elementary formula in {⊥,	, C(1, 1), C̄(1, 1)}. Since
F |= Th(λ), C(1, 1) ∈ Th(λ) and (F , V ) |= φ(s(x1), . . . , s(xn)), φ(s(x1), . . . ,
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s(xn)) is equivalent modulo ≡n
λ to 	. Consequently, φ(x1, . . . , xn) is unifiable in

λ: a contradiction.

(⇐) Suppose φ(x1, . . . , xn) → ∨{xi �≡ 0 ∧ xi �≡ 1: 1 ≤ i ≤ n} ∈ Th(λ). If
φ(x1, . . . , xn) is unifiable in λ, then by Lemma 14, there exists (ε1, . . . , εn) ∈
{0, 1}n such that φ(ε1, . . . , εn) ∈ Th(λ). Let s be a substitution such that for
all positive integers i, if i ≤ n, then s(xi) = εi. Since φ(x1, . . . , xn) → ∨{xi �≡
0 ∧ xi �≡ 1: 1 ≤ i ≤ n} ∈ Th(λ), s(φ(x1, . . . , xn)) → ∨{s(xi) �≡ 0 ∧ s(xi) �≡ 1:
1 ≤ i ≤ n} ∈ Th(λ). Since for all positive integers i, if i ≤ n, then s(xi) = εi,
φ(ε1, . . . , εn) → ∨{εi �≡ 0 ∧ εi �≡ 1: 1 ≤ i ≤ n} ∈ Th(λ). Since φ(ε1, . . . , εn) ∈
Th(λ),

∨{εi �≡ 0 ∧ εi �≡ 1: 1 ≤ i ≤ n} ∈ Th(λ). Since (ε1, . . . , εn) ∈ {0, 1}n,∧{εi ≡ 0 ∨ εi ≡ 1: 1 ≤ i ≤ n} ∈ Th(λ). Since
∨{εi �≡ 0 ∧ εi �≡ 1: 1 ≤ i ≤ n} ∈

Th(λ), λ is not consistent: a contradiction.

8 Conclusion

Admissibility problems and unifiability problems are decidable in many modal
logics [1–3,13,14], but modal logics for which they become undecidable are
known [18]. Nevertheless, very little is known about these problems in some of
the most important modal logics considered in Computer Science and Artificial
Intelligence. For example, the decidability and the complexity of the unification
problem for the following modal logics remains open: modal logic K, multi-modal
variants of K, sub-Boolean modal logics.

In this paper, we have examined variants of contact logics. The central result
in this paper is the proof that the weak admissibility problem and the weak
unifiability problem are decidable in these variants.

Much remains to be done. For example, λ being a consistent extension of
λ0, Propositions 16 and 20 imply that wADM(λ) is coNP -hard, but the exact
complexity of wADM(λ) is not known. One may also consider the admissibility
problem ADM(λ) defined in Sect. 4 and the following unifiability problem: given
a formula φ, determine whether φ is unifiable in λ. Finally, there is also the
related question of the unification type of λ. Our conjecture is that the unification
type of most extensions of λ0 considered in [5,17] is finitary.

Acknowledgements. We would like to thank the referees for the feedback we have
obtained from them in the revision process of the present paper. Special thanks are also
due to Yannick Chevalier and Tinko Tinchev for their extensive remarks concerning
Lemma 12.
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3. Babenyshev, S., Rybakov, V.: Unification in linear temporal logic LTL. Ann. Pure
Appl. Logic 162, 991–1000 (2011)

4. Balbiani, P., Tinchev, T.: Boolean logics with relations. J. Logic Algebraic Pro-
gram. 79, 707–721 (2010)

5. Balbiani, P., Tinchev, T., Vakarelov, D.: Modal logics for region-based theories of
space. Fundamenta Informaticæ 81, 29–82 (2007)

6. Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a
proximity approach – I. Fundamenta Informaticæ 74, 209–249 (2006)

7. Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: prox-
imity approach – II. Fundamenta Informaticæ 74, 251–282 (2006)

8. Düntsch, I., Winter, M.: A representation theorem for Boolean contact algebras.
Theoret. Comput. Sci. 347, 498–512 (2005)
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This paper proposes an analysis in a Feature-based Lexicalized Tree-Adjoining
Grammar (F-LTAG) [9,18] for deriving the semantic representations of vari-
ous narrow focus constructions. Te paper presents an extension of the F-LTAG
analysis by Balogh [3] based on the syntax-semantics approach by Kallmeyer &
Romero [11] and the semantic-pragmatic analysis of focus by Balogh [2].

The main aim of the current paper is to broaden the coverage of the focus
approach in F-LTAG as introduced by Balogh [3] that proposes the basics of
an analysis of the syntax-semantics interface of various narrow focus construc-
tions. The semantic representations in the current paper – as before – are given
using the logical language of basic Inquisitive Semantics (InqB) by Ciardelli,
Groenendijk and Roelofsen [5], such that these representations can further be
interpreted according to its semantics and pragmatics. The choice for the logical
system of InqB – as opposed to, e.g., Alternative Semantics [16].1 or the Struc-
tured Meanings Account [12] – is not for a principled reason, but convenient for
the following motivation. One of the main claims in favor of the system of InqB
is, that its semantics and dialogue management system offers an elegant way
to analyze various discourse-related phenomena involving focus, such as: focus-
ing in answers, question-answer relations, contrast in denial and specification by
focusing. Therefore the use of the framework of InqB offers an elegant way to
broaden the analysis by a dialogue management system. The current paper is
addressing the compositional derivation of semantic representations from a com-
putational linguistic point of view, hence the paper does not deal with general
logical or formal semantic issues of the used semantic framework (Inquisitive
Semantics).

1 Background

The analysis proposed in this paper offers a compositional way to calculate the
semantic representations for different focus constructions in a uniform way. The
core framework of the analysis is a Feature-based Lexicalized Tree-Adjoining
Grammar (F-LTAG), that is a TAG where each elementary tree is anchored by
a lexical item – LTAG [9] – and furthermore each node in a tree is annotated with
feature structures [18]. For the semantic component I adapt the F-LTAG account
based on unification following Kallmeyer & Joshi [10] and Kallmeyer & Romero
[11]. The semantic representations are given using flat semantic representations

1 See e.g. Babko-Malaya [1].
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where the logical formulas mirror the logical expressions of basic Inquisitive
Semantics (InqB). Integrating the logical language of InqB into the semantic
representations serves the broader purpose of integrating the current analysis
with a component of semantic-pragmatic interpretation and discourse modeling
(e.g. modeling question-answer relations).

1.1 Basic LTAG

In the formalism of Lexicalized Tree-Adjoining Grammar (LTAG) the derivation
of a sentence is carried out by operations on trees, beginning with a set of
elementary trees that consist of two disjoint sets: the set of initial trees and the
set of auxiliary trees. In LTAG there are two operations on trees: substitution
and adjunction. Substitution is the replacement of a non-terminal leaf node by
another tree. Adjunction is the replacement of an internal node by another tree.
The trees to adjoin are auxiliary trees with a special node, the footnote, marked
by *. In the auxiliary tree (the trees to adjoin) the root node and the footnode
must have the same label. Every non-terminal leaf that is not a footnote is a
substitution node, in the trees marked by ↓ for readability reasons.

Substitution: Adjunction:

Y + X

Y↓ . . .

⇒ X

Y . . .

Y

. . . Y*

+ X

Y . . .

⇒ X

Y

. . . Y

. . .

In feature based tree-adjoining grammar (F-TAG) each node is annotated
with two feature structures: the top and the bottom features. The top features
of a node give the relation of the node to the tree above it, while the bottom
features give the relation to the tree below it. At the end of the derivation – on
the final derived tree – top and bottom features are unified for all nodes.

At substitution in F-TAG the top features of the root of the tree to substitute
unify with the top features of the substitution node. Substitution nodes have only
top features. At adjunction the top features of the root of the auxiliary tree unify
with the top features of the target node, and the bottom features of the footnode
of the auxiliary tree unify with the bottom features of the target node.

F-TA Gsubstitution: F-TA Gadjunction:

Yt1
b1

+ X

Y↓t2 . . .

⇒ X

Yt1�t2
b1

. . .

Ytr
br

. . . Y*tfbf

+ X

Ytx
bx

. . .

⇒ X

Ytx�tr
br

. . . Ytf
bx�bf

. . .
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1.2 F-LTAG Semantics

In the semantic component of F-LTAG in [10,11], elementary trees come with
features on each node and a (flat) semantic representation, the latter consist-
ing of a set of labelled propositions and a set of scope constraints. The feature
structures, labelled proposition propositions and scope constraints contain meta-
variables of individuals, propositions or situations, all of them given by boxed
numbers, hereby linking the feature structures to a semantic representation. By
substitution and adjunction of the trees, feature structures get unified and the
meta-variables get identified. Also the semantic representation of the resulting
tree is calculated by taking the union of the representations of the participating
trees. For an illustration of the F-LTAG semantics see Example 1, the derivation
of the question Who walks? assigning the semantic representation as ?∃x.walk(x)
using the language of InqB. To prevent confusion with the ‘classical’ first-order
logical system, let me provide a schematic explanation of the semantic repre-
sentation here. According the to system of InqB, the expression ?∃x.walk(x) is
equivalent to the disjunction ∃x.walk(x) ∨ ¬∃x.walk(x) and leads to the set of
possibilities (= sets of worlds)

⋃
d∈D walk(d)∪¬walk(d) (see more details in the

next section). The example here differs from [11] in two crucial ways: (i) it uses
the logical language of InqB in the semantic representations, and (ii) for the
wh-scope two new features – whmax and whmin – are introduced.

Example 1. Who walks?

S

NP↓I= 1 ,whmax= 4

whmin= 3
S
P= 8

NP

ε

VPP= 8
P=l1

walks

NPI=x,whmax= 6

whmin= 7

who

l0 : ? 4 , l1 : walk( 1 )
4 ≥ 3 , 3 ≥ 8

l2 : ∃x 5

6 ≥ l2, 5 ≥ 7

The elementary tree of walks comes with a semantic representation consisting
of two propositions: l0 contributes the question-operator applied to a proposition
given here as the meta-variable 4 . The proposition l1 says, that the predicate
walk is applied to the individual variable 1 that is contributed by the NP-tree
substituted to the given position: given by I = 1 on the feature structure of
the substitution node. Here, two special features are introduced: whmax and
whmin. These features are inspired by the idea of a separate wh-scope window
for wh-quantificational elements from Romero, Kallmeyer & Babko-Malaya [14]
and by the maxs and mins features from Kallmeyer & Romero [11] that indicate
the scope window of a given quantificational phrase. The features maxs and mins
determine the upper scope boundary and lower scope boundary of quantifica-
tional NPs like someone or everyone, hereby creating a scope-window. whmax
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and whmin similarly indicate the scope window for wh-elements and focused
constituents. Separating these two different scope windows is motivated by the
different scope properties of these elements and has the advantage to account
for, e.g., focusing in questions or quantified NPs in focus. Next to the proposi-
tions l0 and l1, the scope constrains 4 ≥ 3 , 3 ≥ 8 are given that determine
the scope relations between the given propositions.2 The scope constrains are
defined between the propositional meta-variables and the propositional labels.

The NP-tree of the wh-phrase gets substituted into the S-tree of walks result-
ing in the equations 1 = x, 4 = 6 , 3 = 7 and since nothing is adjoined at the
VP node3, we have 8 = l1. After these equations the combination of the semantic
representations results in:

l0 : ? 4 , l1 : walk(x), l2 : ∃x 5

4 ≥ 3 , 3 ≥ l1, 4 ≥ l2, 5 ≥ 3

The only possible plugging (see e.g. [4]) is: 4 �→ l2, 5 �→ l1, 3 �→ l1, deter-
mined by the scope constraints 4 ≥ 3 , 3 ≥ l1, 4 ≥ l2, 5 ≥ 3 . This plugging
derives the semantic representation as ?∃x.walks(x).

1.3 Basic Inquisitive Semantics

In the following analysis I adapt several ideas of basic Inquisitive Semantics
[5], a logical semantic approach of linguistic dialogue and information exchange,
where utterances provide data (informativeness) and raise issues (inquisitive-
ness). In my analysis I follow the Fact of Division in InqB that all utterances are
divided into two “components”: an assertion (informative content) and a ques-
tion (inquisitive content), the latter considered as the issue behind the given
utterance. In the following I use infc for the assertion part and inqc for the
underlying issue.4 Furthermore, in the derived (flat) semantic representations I
use the logical language of InqB.5

The main aim behind Inquisitive Semantics is to create a logical system that
models the flow of a coherent dialogue. The principal goal is to provide a model
of information exchange as a cooperative process of raising and resolving issues.
In the semantic interpretation of utterances, the main source of inquisitiveness is
disjunction [6,13]. The disjunction of two propositions is naturally interpreted as
providing the information that one of the two propositions is true and also raising
the issue which one of them is true. Hence the disjunction p ∨ q provides two

2 4 ≥ 3 requires, that the proposition that 4 stands for is either equal to or scopes
over the proposition that 3 stands for.

3 To keep the examples easier, none of the following examples contain adjunction at
the VP node, so in later examples I will skip the P features at the VP and S nodes.

4 In earlier versions of Inquisitive Semantics [7] these two notions were referred to as
the Theme (question) and the Rheme (assertion).

5 Note, that certain details are different – e.g., the representation of proper names –
between the InqB representation and a flat semantic representation. This technical
detail will not be discussed any further in this paper.
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Possibilities: p is true or q is true, while eliminating the option that both of them
are false. Similarly, questions also lead to possibilities of whom the questioner
wants to know which one holds. Take, for example, the polar question Is it
raining? (?p) identified by the set of two propositions/possibilities it is raining
(p) and it is not raining (¬p). Since the questioner is interested whether p or ¬p is
the case, the question ?p can be defined as the disjunction of its two possibilities:
p ∨ ¬p. Also in general, questions in InqB are defined in terms of disjunction.
In the logical language of InqB ‘?’ is the interrogative operator, and ?φ is an
abbreviation of φ ∨ ¬φ.

In (basic) Inquisitive Semantics, the core concept defines the meaning of
expressions is that of a proposition (note, that the notion of proposition in InqB is
different from the classical formal semantic notion of proposition). A proposition
is a downward closed set of information states, where information states are
defined as sets of possible worlds (s ⊆ ω, ω being the set of all possible worlds)
as illustrated in Fig. 1 (i)–(v) below. Special states are the ignorant state (iv),
when s = ω and the inconsistent state (v) when s = ∅.

w1 w2

w3 w4

{w1, w2, w3, w4}

w1 w2

w3 w4

{w1, w2, w3}

w1 w2

w3 w4

{w1, w2}

w1 w2

w3 w4

{w1, w3}

w1 w2

w3 w4

{}

Fig. 1. Information states in InqB

The proposition expressed by φ is referred to as [φ]. As an illustration see
Figs. 1 and 2 below, where p, q are the two proposition letters in the language. The
set of worlds, ω = {w1, w2, w3, w4} where the valuations are p(w1) = p(w2) =
1, p(w3) = p(w4) = 0, q(w1) = q(w3) = 1, q(w2) = q(w4) = 0.

w1 w2

w3 w4

p

w1 w2

w3 w4

q

w1 w2

w3 w4

p ∨ q

Fig. 2. Propositions in InqB

The informative content of a proposition A is the union of the sets of possible
worlds by

⋃
A, referred to as info(A). In terms of inquisitiveness and informa-

tiveness a proposition A is informative in a given state s if its informative content
is a proper subset of s (info(A) ⊂ s) and A is inquisitive in s if its informative
content is not an element of A (info(A) = A). In terms of information updates,
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this means that an informative utterance eliminates some worlds (or provides
information), while an inquisitive utterance introduces new issues.

Based on inquisitivity and informativity three meaningful sentence types can
be defined: (a) questions that are inquisitive and not informative, (b) assertions
that are informative and not inquisitive and (c) hybrids that are both informative
and inquisitive. Such a hybrid type is the proposition p ∨ q, that provides the
information that ¬p∧¬q is not the case, while it raises the issue which one of p or
q is true, thus it gives two possibilities. The question ?(p ∨ q) is not informative,
it does not exclude anything, it only raises the issue whether p or q or ¬p∧¬q is
the case (three possibilities).6 Similarly to p ∨ q the predicate logical expression
∃x.φ also provides the information that ¬∃x.φ is not the case and additionally it
raises the issue which individuals are φ. It leads to several possibilities depending
on the number of individuals in the domain. Take, for example, the proposition
∃x.P (x) and a small domain of three individuals D = {a, b, c}. The existential
expression ∃x.P (x) then excludes the option that none of a, b, c is P , and raises
the issue which one is P . Relative to the given domain D, this expression leads
to the set of three possibilities: P (a), P (b), P (c). Following this line, I assume the
standard logical translation of a constituent question to be of the form ?∃x.φ.
A constituent question is interpreted as a set of possibilities, corresponding to
its possible answers. I give a Hamblin-style interpretation of questions as sets
of propositions, however with the crucial difference that in my analysis the set
contains the proposition nobody is P as well. The wh-question Who walks? is
translated as ?∃x.walk(x) which is the same as the disjunction of the propositions
(possibilities) walk(d1) ∨ walk(d2) ∨ ... ∨ walk(dn) ∨ ¬∃x.walk(x) relative to the
given domain of individuals.

Following the Fact of Division in Inquisitive Semantics, Balogh [2] proposes
an analysis of sentences containing focused constituents claiming that focusing
leads to a special question-assertion (or theme-rheme with the old terminology)
division. Note, that in this approach the sentences themselves are not split into
two parts, but the way is defined how to signal the inherent issue (question)
of the utterance and the information it provides (assertion). The question/issue
behind the utterance is always inquisitive, introducing two or more possibilities.
In order to derive the special division of a focused sentence Balogh [2] defines the
Rule of Division by focusing. The rule is presented here with a slight terminology
change following the new version of InqB.

Definition 1. Rule of Division
Let α be an utterance in natural language, α′ the translation of α in the language
of InqB, cF the constituents with focus marking and � the operation: if ϕ =?ψ
then ϕ� = ψ, otherwise ϕ� = ϕ.

Every utterance α is divided into a question, inqc(α) and an assertion infc
(α) where inqc(α) = ?∃x(α′[cF ′/x])� and infc(α) = α′

6 Note, that ?φ is not a separate category in the syntax of the logical language, but it
is defined in terms of disjunction as given above.



F-LTAG Semantics for Issues Around Focusing 67

This definition correctly derives the question-assertion (or theme-rheme) divi-
sion of various narrow focus constructions, that further gets interpreted in the
system of InqB. The representation of focusing has to provide different struc-
tures for the different (narrow) focus constructions. Consider the basic cases of
a sentence with a transitive verb: (i) none of the arguments is focused, (ii) the
subject is focused or (iii) the object is focused, or (iv) both the subject and the
object are focused. Applying the Rule of Division above, all these sentences lead
to different question-assertion divisions, where the issues behind (the inqcs) are
different depending on the focus structure, while the information content (infc)
is the same in all sentences.

(1) Pim likes Sam.
� translates as ϕ = like(p, s)
� inqc: ?like(p, s) + infc: like(p, s)

PIMF likes Sam.
� translates as ϕ = like(pF , s)
� inqc: ?∃x.like(x, s) + infc: like(p, s)

Pim likes SAMF .
� translates as ϕ = like(p, sF )
� inqc: ?∃y.like(p, y) + infc: like(p, s)

PIMF likes SAMF .
� translates as ϕ = like(pF , sF )
� inqc: ?∃x∃y.like(x, y) + infc: like(p, s)

Notice the close analogy/similarity with Rooth’s [15,16] Alternative Seman-
tics. What figures the domain of alternatives in Rooth’s account appears here as
a choice question. The proposal of Balogh [2] provides a context-based analysis of
focusing with special attention to question-answer congruence, exhaustivity, con-
trast in denials, and specification. However, the system does not offer a composi-
tional analysis at the syntax-semantics interface. As can be seen in Definition 1,
focus marking of constituents get directly translated in the logical language as
φF not referring to the syntactic structure and the contribution of the focused
constituent. In the following I propose an analysis aiming to fill this gap by
providing the intended semantics representations (question-assertion divisions)
compositionally on the basis of the syntactic structure of the given sentence.

2 F-LTAG Semantics for Focusing

Following InqB, in my F-LTAG analysis the semantic representations of utter-
ances all consist of two components: one that represents the inquisitive content
(question/issue) and one that represents the informative content (assertion).
According to this, each S-tree comes with a semantic representation, such as the
following:
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〈 l0 : ? i , l1 : Rn( t1 , ..., tn )
{ i ≥ j , j ≥ l1, ...}
l1 : Rn( t1 , ..., tn )
{constraints}

〉

In this two-dimensional representation the above part is the representation of
the question/issue (inqc), while the below one is the representation of the asser-
tion (infc). Defined in this way all S-trees come with a semantic representation,
where the (inqc) will lead to a question – the issue behind the sentence –, and
the (infc) leads to a proposition – the semantic content of the sentence. Take,
for example, the sentence Pim likes Sam that is built up from three elementary
trees, the S-tree of the verb and the two NP-trees of the two arguments.

Example 2. Pim likes Sam

S

NP↓I= 1 ,whmax= 4

whmin= 3
VP

VP=l1

likes

NP↓I= 2 ,whmax= 4

whmin= 3

〈 l0 : ? 4 , l1 : like( 1 , 2 )
4 ≥ 3 , 3 ≥ l1

l1 : like( 1 , 2 )

〉

NPI=x,whmax= 8

whmin= 7

Pim

〈
l2 : pim(x)

l2 : pim(x)

〉
NPI=y,whmax= 10

whmin= 9

Sam

〈
l3 : sam(y)

l3 : sam(y)

〉

By substituting the NP-tree in the S-tree the features on the nodes get uni-
fied (thus 1 = x, 2 = y) and the corresponding semantic representations are
combined, resulting in the semantic representation of the sentence as:

〈 l0 : ? 4 , l1 : like(x, y), l2 : pim(x), l3 : sam(y)
4 ≥ 3 , 3 ≥ l1

l1 : like(x, y), l2 : pim(x), l3 : sam(y)

〉

There is one way of plugging possible here: 4 �→ l1, 3 �→ l1, deriving the
semantic representation of the given sentence as the following, where the inquis-
itive content (inqc) corresponds to the question Does Pim like Sam? and the
informative content (infc) corresponds to the proposition Pim likes Sam.

〈
?like(x, y), pim(x), sam(y)

like(x, y), pim(x), sam(y)

〉
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2.1 Subject/Object Focus

Sentences consisting of a transitive verb have the possibilities of narrow focus:
either the subject or the object (or both) can be focused. First, look at the sen-
tences in (1) with single focus. The analysis derives the infc as the proposition
Pim likes Sam for both, while the different focus structures lead to two different
inqcs corresponding to the inherent questions: Who likes Sam? and Whom does
Pim like? respectively.

In the analysis of PIMF likes Sam with narrow focus on the subject, we take
the S-tree of likes as above and substitute two NP-trees: for the non-focused
object the tree for Sam as in Example 2, while for the focused subject we take
the tree for Pim with a special semantics:

Example 3. Focused subject

NPI=x,whmax= 8 ,foc=+

whmin= 7

Pim

〈 l2 : ∃x 11 ,
8 ≥ l2, 11 ≥ 7

l2 : pim(x)

〉

The semantic representation of the focused NP contributes a special inqc as
an existential expression.7 The substitutions of the two NPs carried out and the
respective meta-variables unified: 1 = x, 2 = y, 8 = 4 , 7 = 3 , that leads to the
semantics:

〈 l0 :? 4 , l1 : like(x, y), l2 : ∃x 11 , l3 : sam(y)
4 ≥ 3 , 3 ≥ l1, 4 ≥ l2, 11 ≥ 3

l1 : like(x, y), l2 : pim(x), l3 : sam(y)

〉

Again, one way of plugging is possible here: 4 �→ l2, 11 �→ l1, 3 �→ l1 pro-
viding the twofold semantic representation corresponding to the question Who
likes Sam? as the inqc and the proposition Pim likes Sam as the infc.

〈
?∃x.like(x, y), sam(y)

like(x, y), pim(x), sam(y)

〉

The analysis of Pim likes SAMF is similar, we take the same S-tree, for the
non-focused subject we substitute the tree for Pim as before (Example 2) and
for the focused object we substitute the tree for Sam as:

7 Note, that the language of InqB is used, where ∃x.φ leads to a set of possibilities.
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Example 4. Focused object

NPI=y,whmax= 10 ,foc=+

whmin= 9

Sam

〈 l3 : ∃y 12

10 ≥ l3, 12 ≥ 9

l3 : sam(y)

〉

The two substitutions here lead to the semantic representations before and
after plugging:

〈 l0 :? 4 , l1 : like(x, y), l2 : pim(x), l3 : ∃y 12

4 ≥ 3 , 3 ≥ l1, 4 ≥ l3, 12 ≥ 3

l1 : like(x, y), l2 : pim(x), l3 : sam(y)

〉

〈
?∃y.like(x, y), pim(x)

like(x, y), pim(x), sam(y)

〉

Similarly to the previous example, the resulting representation corresponds
to the question Whom does Pim like? as the inqc and to the proposition Pim
likes Sam as the infc.

2.2 Multiple Focus and Focus in Questions

After showing the basic cases, let us now turn to more complex examples such
as multiple focus. In sentences containing a transitive verb, not only single
focusing is possible, but also both arguments can be focused at the same time:
PIMF likesSAMF . The infc of this sentence is again the proposition Pim likes
Sam, while the inqc is the multiple wh-question Who likes whom? The analysis
derives the correct division, by substituting the NP-trees of the focused argu-
ments (see Examples 3 and 4) into the S-tree of likes (see Example 2).
The substitutions of the focused subject and object lead to the semantic repre-
sentation:

〈 l0 :? 4 , l1 : like(x, y), l2 : ∃x 11 , l3 : ∃y 12

4 ≥ 3 , 3 ≥ l1, 4 ≥ l2, 11 ≥ 3 , 4 ≥ l3, 12 ≥ 3

l1 : like(x, y), l2 : pim(x), l3 : sam(y)

〉

Here, two different pluggings are possible: (i) 4 �→ l2, 11 �→ l3, 12 �→ l1 and
(ii) 4 �→ l3, 12 �→ l2, 11 �→ l1, yielding two semantic representations, where the
representations of the inqc are slightly different: at plugging (i) ?∃x∃y.like(x, y)
and at (ii) ?∃y∃x.like(x, y). These two representations are logically equivalent,
both corresponding to the question Who likes whom?
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The analysis proposed above also gives a straightforward derivation of a
special construction, when an argument is focused within a wh-question as, e.g.
Who likes SAMF ? In the derivation of Who likes SAMF ? we take the S-tree of
likes (Example 5) and substitute the elementary trees of the wh-phrase who (see
Example 1) and the focused object Sam (see Example 4):

Example 5.

S

NP↓I= 1 ,whmax= 4

whmin= 3
S

NP

ε

VP

VP=l1

likes

NP↓I= 2 ,whmax= 4

whmin= 3

After all substitutions are carried out and all pluggings are resolved we get
the intended representation of Who likes SAMF ? as:

〈
?∃x∃y.like(x, y)

?∃x.like(x, y) ∧ sam(y)

〉

3 Focused NPs with Determiners and Adjectives

In Sect. 2 different focus structures were shown, however, all examples contained
proper names. In this section I propose an extension of the analysis to compound
NPs involving determiners and adjectives.

(2) a. [Two young BOYS]F blew out the fire.
answering: Who blew out the fire?

b. Pim saw [a grumpy CAT]F .
answering: What did Pim see?

c. Pim saw a [GRUMPY]F cat.
answering: What (kind of) cat did Pim see?

These examples raise various new issues for the analysis. First of all we
must account for focus marking [8,17] within an NP, and secondly we must
derive compositionally the correct issue behind it, depending on the question-
contribution of the NP with focus marking. As a starting point we derive the
semantic representation of the examples in (2), where pitch accent on the noun
head leads to focus marking of the whole NP, while pitch accent on the adjective
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does not focus mark the whole functional projection. Note, however, that the
same placement of the pitch accent can lead to different interpretations, used in
different contexts.

For a more comprehensive analysis, also including examples in (3) below, we
have to deal with the information structure of a sentence and discourse coherence:
what is “given/retrievable” and “non-given/not-retrievable” information.

(3) a. Pim saw a grumpy [CAT]F .
context: Pim saw all kinds of grumpy animals. What did he see?

b. Pim saw [a GRUMPY cat]F .
context: Pim saw all kinds of cats. What did he see?

Such a component of representing information structure, givenness and its
effect on the semantic representation is left for further research. The analysis of
this paper is restricted to the cases in (2).

3.1 NP Internal Focus Marking

In this section I will discuss the issue how to analyze the relation between the
placement of the pitch accent and the marking of the focused constituent in
F-LTAG. For this we need to introduce two features foc and pitch that stand
for focus marking and the placement of the pitch accent respectively. The value
of the pitch accent is passed to the foc feature that appears on higher nodes in
the elementary tree of the noun phrase. In Sect. 2, the proposal of the analysis
of narrow focus constructions was introduced, deriving a two-fold semantics of
utterances representing the inqc (underlying issue) and the infc (information
content). Focus-marked (foc = +) constituents contribute a special semantics
to the inqc of the sentence meaning, yielding the corresponding wh-question.
The elementary tree of a focus-marked constituent comes with a different seman-
tic representation as their non-focused counterpart. Focus marking is signaled
within the feature structure of the given elementary tree by the feature foc
with possible values + and− for focused and non-focused occurrences. Following
Selkirk’s [17] Focus Projection principle, the same accenting can receive differ-
ent focus marking, hence different focus interpretations. Selkirk’s focus marking
principles suggest, that pitch accent on the object noun can lead to a narrow
focus interpretation or to a broad (VP) focus interpretation.

(4) a. Pim saw [a CAT]F . b. Pim [saw a CAT]F .

In both sentences the NP-tree of the object is built from the tree of the
common noun and the tree of the determiner. In the tree of the noun the N-
node has the pitch feature signaling the placement of the pitch accent on the
common noun. The value of the pitch accent is then passed to the foc feature
that appears on several nodes of the elementary tree of the NP (� marking the
node for the lexical anchor).
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NPfoc= 1

foc= 1

N�foc= 1

foc= 1 ,pitch= 1

Pitch accent on the noun is represented by pitch = + on the N-node, that
focus-marks the N-head and the whole NP by passing up its value.

Example 6. NP internal focus marking

NPfoc= 1

foc= 1

Nfoc= 1
foc=+,pitch=+

cat

NP
foc= 2

Detfoc=−

a

NP*foc= 2 =⇒

NPfoc= 1

foc= 2

Detfoc=−

a

NPfoc= 2

foc= 1

Nfoc= 1
foc=+,pitch=+

cat

After adjunction of the determiner (if no more adjunction’s take place), the
top and bottom features unify, and thus the meta-variables are identified: 1 = 2

and 1 = +. As a result, the whole NP is focus-marked by foc = +. As for the
broad focus interpretation, the + value of the foc feature can be optionally
passed up from the rightmost NP argument to the higher VP node marking the
possible focus projection. This is not possible from the subject position (or from
the not right-most argument), the focused NP in that position gets narrow focus
interpretation.

S

NP↓ VPfoc= 1

V� NP↓ NP↓foc= 1

Example 6 shows how the value of the foc feature is passed to the maximal
projection of the noun phrase, marking the whole NP as the focus of the sentence.
This raises the issue how we can deal with NPs containing adjectives like a
grumpy cat where either the noun or the adjective gets the pitch accent. In
case the noun is accented – a grumpy CAT –, it passes the focus marking to
its maximal projection, and the whole noun phrase will be in focus. In case the
adjective is accented – a GRUMPY cat – the default interpretation is where only
the adjective is focus marked, and not the whole NP.

The syntax of the NP a grumpy cat is illustrated below in Example 7. Three
different focus markings are derived: (a) without pitch accent, (b) accent on the
noun head: a grumpy CAT, and (c) accent on the adjective: a GRUMPY cat.
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Example 7. Derivation of a grumpy cat

NPfoc= 1

foc= 1

Nfoc= 1

foc= 1 ,pitch= 1

cat

NP
foc= 2

Det
foc= 3

a

NP*foc= 2

N
foc= 4

Adj
foc= 5

grumpy

N*foc= 4

after adjunctions:
where 1 = 2 = 4

NPfoc= 1

foc= 2

Det
foc= 3

a

NPfoc= 2

foc= 1

Nfoc= 1

foc= 4

Adj
foc= 5 Nfoc= 4

foc= 1 ,pitch= 1

cat

Pitch accent on the noun head and non-accented determiner and adjective
leads to focus marking on the whole NP, while non-accented noun-head with
non-accented determiner and accented or non-accented adjective give foc = −
on the maximal projection.

Example 8. Focus marking in a grumpy CAT versus a GRUMPY cat

NPfoc= 1

foc= 2

Detfoc=−

a

NPfoc= 2

foc= 1

Nfoc= 1

foc= 4

Adjfoc=− Nfoc= 4
foc=+,pitch=+

cat

NPfoc= 1

foc= 2

Detfoc=−

a

NPfoc= 2

foc= 1

Nfoc= 1

foc= 4

Adjfoc=+ Nfoc= 4
foc=−,pitch=−

cat

3.2 F-LTAG Semantics of Focused NPs

Within the NP each part contributes something to the inqc and the infc of the
whole. Example 9 illustrates the derivation of the semantic representation of an
indefinite NP without focusing. Using two-dimensional semantic representations
this example derives the semantic contribution without focusing, hence in all
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semantic contributions inqc= infc. For an easier read of the examples, only the
most relevant features are displayed. Not all of the foc features are displayed
here, they are according to the examples in Sect. 3.1.

Example 9. Indefinite NP a grumpy cat without focus

NPI=x,foc=−
P= 6

NI=x,P= 6
P=l3,pitch=−

cat

NPI=x,maxs= 7

mins= 8

Detfoc=−

a

NP∗
P= 9

NI= 10
P=l5

Adjfoc=−

grumpy

N∗
P= 11

〈
l3: cat(x)

l3: cat(x)

〉 〈 l4: ∃x. 12 ∧ 13

12 ≥ 9 , 7 ≥ 13 , 13 ≥ 8

l4: ∃x. 12 ∧ 13

12 ≥ 9 , 7 ≥ 13 , 13 ≥ 8

〉 〈
l5: 11 ∧grumpy( 10 )

l5: 11 ∧grumpy( 10 )

〉

The tree of the determiner is adjoined at the NP-node of the tree of the noun,
while the tree of the adjective is adjoined at the N-node of the tree of the noun.
After the adjunctions, the following equations hold: 9 = 6 , 10 = x, 11 = l3
and 6 = l5. The resulting representation of the inqc-contribution of the NP a
grumpy cat before and after plugging ( 12 �→ l5) are the following.

(a) before plugging: (b) after plugging:
l4: ∃x. 12 ∧ 13 , l5: cat(x)∧grumpy(x)
12 ≥ l5, 7 ≥ 13 , 13 ≥ 8

l4: ∃x.(cat(x) ∧ grumpy(x)) ∧ 13

7 ≥ 13 , 13 ≥ 8

In case, we have a pitch accent on the N-head, the maximal projection is focus
marked, that leads to a different semantic representation. In such cases, the inqc-
contribution of the NP is ∃x. 5 (similarly as shown in Sect. 2.1). However, by
simply combining the semantic representations in Example 10 the achievement of
the intended semantic representation for the maximal projection is problematic.

Example 10.

NPI=x,foc=+,whmax= 14

whmin= 15

NI=x,P= 6
P=l3

cat

NPI=x,maxs= 7

mins= 8

Det

a

NP∗
P= 9

NI= 10
P=l5

Adj

grumpy

N∗
P= 11

〈 l3: ∃x. 5
14 ≥ l3, 5 ≥ 15

l3: cat(x)

〉〈 l4: ∃x. 12 ∧ 13

12 ≥ 9 , 7 ≥ 13 , 13 ≥ 8

l4: ∃x. 12 ∧ 13

12 ≥ 9 , 7 ≥ 13 , 13 ≥ 8

〉 〈
l5: 11 ∧grumpy( 10 )

l5: 11 ∧grumpy( 10 )

〉
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Carrying out the adjunctions and the composition of the semantic contribu-
tions, the infc-contribution is derived correctly as before, while for the repre-
sentation of the inqc it gives the following, unwanted result.

inqcNP : l4: ∃x.∃x. 5 ∧ 13 , l5: 11 ∧ grumpy(x)
12 ≥ l5, 7 ≥ 13 , 13 ≥ 8

As the example sentences in (2) show, in case the whole NP is focus marked,
the underlying wh-question is the one where the NP is replaced by the corre-
sponding wh-phrase. This suggests, that in such cases the inqc-contribution of
the determiner and the adjunct should be discarded, not adding information to
the inqc-contribution of the whole NP. To capture this, we need to express the
following generalization: (a) in case the determiner/adjective is itself not marked
for focusing (foc=−) and adjoined to an NP-tree where the root node is marked
for focusing (foc=+), then the inqc-contribution of the determiner/adjunct is
discarded; (b) in case the determiner/adjective is not focus-marked (foc=−)
and adjoined to an NP-tree where the root node is neither marked for focus-
ing (foc=−), then the inqc-contribution of the determiner/adjective is adding
information to the whole.

As before, the non-focused parts contribute the same information to the
theme and the theme of the whole, thus the semantic representation of the non
focused determiner and adjective is as shown in Example 9: inqc=infc. When
the tree of the determiner/adjective is adjoined to an NP that is focus-marked,
the inqc-contribution of the determiner/adjective will not add anything to the
whole. Since the appearance of this restriction depends on whether the whole
NP is focus marked (foc=+ at the root node), discarding the theme contribution
must be driven by the semantic representation of the NP-tree. I suggest, that the
inqc-contribution of a focused NP tree is marked for being “complete” (C!), such
that it blocks unification with the theme-contribution of the adjoining auxiliary
trees (the trees of the determiner and the adjective).

Example 11. Blocking unification of theme contributions

NPfoc=−: Detfoc=−: Adjfoc=−:
l3: cat(x) l4: ∃x. 12 ∧ 13

constraints
l5: 11 ∧ grumpy( 10 ) ⇒ inqcN � inqcDet

inqcN � inqcAdj

NPfoc=+: Detfoc=−: Adjfoc=−:
l3: ∃x. 5
14 ≥ l3, 5 ≥ 15

C!
l4: ∃x. 12 ∧ 13

constraints
l5: 11 ∧ grumpy( 10 ) ⇒ inqcN � � inqcDet

inqcN � � inqcAdj

When the whole NP is focus marked, the inqc-contribution of the noun do
not unify with the inqc of the determiner and the adjective, correctly deriving
the division as:
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〈 l3: ∃x. 5
14 ≥ l3, 5 ≥ 15

l4: ∃x.cat(x) ∧ grumpy(x) ∧ 13

7 ≥ 13 , 13 ≥ 8

〉

As shown is example (2c) before, in the NP a grumpy cat we can also use pitch
accent on the adjective, marking it as focus: a grumpyF cat. In such cases only
the adjective is focused, and the focus marking feature do not percolate up to the
maximal projection. The contributing trees and their semantic representations
are as in Example 9, except for the adjective, that is now focus marked:

Example 12. Focused adjective

NI= 10 ,whmax= 15

P=l5,whmin= 14

Adjfoc=+

grumpy

N∗
P= 11

〈 l5: 11 ∧ ∃P.P ( 10 )
15 ≥ l5, 14 ≥ 11

l5: 11 ∧grumpy( 10 )

〉

Here, no blocking applies, since the root node of the noun-tree is not focus
marked (foc = −).

NPfoc=−: Detfoc=−: Adjfoc=+:

l3: cat(x) l4: ∃x. 12 ∧ 13

12 ≥ 9 , 7 ≥ 13 , 13 ≥ 8

l5: 11 ∧ ∃P.P ( 10 )
15 ≥ l5, 14 ≥ 11

Carrying out the adjunctions leads to the unifications: 6 = 9 = l5, 10 =
x, 11 = l3 and finally – after plugging ( 12 �→ l5) – to the semantic representa-
tion of the noun phrase as expected. The expression ∃P.P (x) standing for the
possibilities of x is P , x is P ′ etc. depending on a contextually given set of
predicates.

l4: ∃x.cat(x) ∧ ∃P.P (x) ∧ 13

7 ≥ 13 , 13 ≥ 8

3.3 Further Research: Focus and Quantifier Scope

In Sect. 1.2 a special scope window was introduced for focused constituents and
questions, given by the new features whmax and whmin. These features follow
the idea of maxs and mins from Kallmeyer & Romero [11]. Differentiating the
two scope windows opens a new issue for direct further research: the relation
between focus and quantifier scope. In case we have both a quantificational
NP and a focused constituent in the sentence, the distinction of the two scope
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windows gets relevant. It offers a way to account for the effects of the concurrence
of focused and quantified NPs, and well as quantified NPs in focus.

First, I illustrate the F-LTAG derivation of different scope orders as intro-
duced by Kallmeyer & Romero [11]. Consider the sentence A dog chased every
cat, that has two interpretations, regarding which quantifier has wider scope. As
already shown in Sect. 1.1, the mechanism derives an underspecified semantic
representation for this sentence, where two pluggings are possible, that lead to
the two different readings.

Example 13. Scope ambiguity

NPI=x,maxs= 5

mins= 6

a dog

l2: ∃x. 9 ∧ 10 , l3: dog(x)
9 ≥ l3, 5 ≥ 10 , 10 ≥ 6

NPI=y,maxs= 7

mins= 8

every cat

l4: ∀y. 11 → 12 , l5: cat(y)
11 ≥ l5, 7 ≥ 12 , 12 ≥ 8

S

NP↓I= 1 ,maxs= 3
mins=l1

VPP=l1

V

chased

NP↓I= 2 ,maxs= 3
mins=l1

l1: chase( 1 , 2 )

After substituting the two NP trees the semantic representations are com-
bined, features get unified and meta-variables get their values: 1 = x, 2 = y,
3 = 5 = 7 , l1 = 6 = 8 , resulting in the following semantic representation of
the sentence:

l1: chase(x, y), l2: ∃x. 9 ∧ 10 , l3: dog(x), l4: ∀y. 11 → 12 , l5: cat(y)
9 ≥ l3, 3 ≥ 10 , 10 ≥ l1, 11 ≥ l5, 3 ≥ 12 , 12 ≥ l1

The above semantic representation is still underspecified, hence the scope
order of the quantifiers is still undefined. Following the given scope constraints,
there are two different pluggings possible here: (i) 9 �→ l3, 11 �→ l5, 12 �→ l2,
10 �→ l1 resulting in ∀y.cat(y) → ∃x.dog(x) ∧ chase(x, y); and (ii) 9 �→ l3,
11 �→ l5, 10 �→ l4, 12 �→ l1 resulting in ∃x.dog(x) ∧ ∀y.cat(y) → chase(x, y).

In the F-LTAG analysis of focusing, I introduced the scope window for focus
and questions by the features whmax/whmin inspired by the maxs/mins fea-
tures from Kallmeyer & Romero [11]. The distinction of two different scope win-
dows allows us to correctly derive the inqc of the sentence containing quantified
NPs or other scope taking constituents, e.g., in A dog chased every cat.
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Example 14. Different scope windows

NPI=x,maxs= 5 ,whmax= 14

mins= 6 ,whmin= 13

a dog

〈 l2: ∃x. 9 ∧ 10 , l3: dog(x)
9 ≥ l3, 5 ≥ 10 , 10 ≥ 6

l2: ∃x. 9 ∧ 10 , l3: dog(x)
9 ≥ l3, 5 ≥ 10 , 10 ≥ 6

〉

NPI=y,maxs= 7 ,whmax= 16

mins= 8 ,whmin= 15

every cat

〈 l4: ∀y. 11 → 12 , l5: cat(y)
11 ≥ l5, 7 ≥ 12 , 12 ≥ 8

l4: ∀y. 11 → 12 , l5: cat(y)
11 ≥ l5, 7 ≥ 12 , 12 ≥ 8

〉

S

NP↓I= 1 ,maxs= 3 ,whmax= 18

mins=l1,whmin= 17
VPP=l1

V

chased

NP↓I= 2 ,maxs= 3 ,whmax= 18

mins=l1,whmin= 17

〈 l0: ? 18 , l1: chase( 1 , 2 )
18 ≥ 17 , 17 ≥ 4

l1: chase( 1 , 2 )

〉

After substitution of the NP-trees and the combination/unification of the
semantic representations, the following representation of the inqc is derived:

l0: ? 18 , l1: chase(x, y), l2: ∃x. 9 ∧ 10 , l3: dog(x), l4: ∀y. 11 → 12 , l5: cat(y)
18 ≥ 17 , 17 ≥ l1, 9 ≥ l3, 3 ≥ 10 , 10 ≥ l1, 11 ≥ l5, 3 ≥ 12 , 12 ≥ l1

Here, different pluggings are possible, deriving possible inqcs of the sentence
A dog chased every cat. The scope constraints allow the pluggings: (i) 18 �→ l2,
10 �→ l4, 12 �→ l1, 9 �→ l3, 11 �→ l5 and (ii) 18 �→ l4, 10 �→ l1, 12 �→ l2, 9 �→ l3,
11 �→ l5 deriving the possible inqcs as ?∃x.dog(x)∧∀y.cat(y) → chase(x, y) and
?∀y.cat(y) → ∃x.dog(x) ∧ chase(x, y) respectively.

By differentiating the two scope windows, we can also correctly derive the
semantic representation of a sentence in which one of the quantified NP is in
focus. Take, for example, the sentence [A DOG]F chased every cat where the
theme or underlying question is Who chased every cat? Having two different
scope windows we can account for the fact, that in the underlying question no
inverse scope is possible. The wh-phrase takes scope, namely the widest scope,
but this is due to a different scope window as the scope taking of quantifiers. The
wh-phrase will always take the widest scope, not allowing of an interpretation
with inverse scope order.
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Example 15. Quantified NP in focus

NPI=x,maxs= 5 ,whmax= 14

mins= 6 ,whmin= 13

a dog

〈 l2: ∃x. 19
14 ≥ l2, 19 ≥ 13

l2: ∃x. 9 ∧ 10 , l3: dog(x)
9 ≥ l3, 5 ≥ 10 , 10 ≥ 6

〉

4 Summing up

The approach introduced here is a proposal towards an approach of the syntax-
semantics interface of focus constructions using F-LTAG with a unification based
semantics. The analysis derives the question-assertion (inqc/infc) division of
different (narrow) focus constructions, extended to NPs with a richer inner
structure. The analysis of focused NPs in the current paper follows the core ideas
of the F-LTAG analysis proposed by Balogh [3]. This analysis provides an exten-
sion to the syntax-semantics interface of Kallmeyer & Romero [11] and deter-
mines the semantic representations of narrow focus constructions as assumed
in Balogh [2] on the basis of the syntactic structures of the sentences in a
straightforward, intuitive and compositional way. The advantage of this analysis
is that different accenting/focus structure of the same word order bear the same
information content (infc), while the different focus structures lead to different
inherent issues (inqc) indicating that these sentences are felicitous in different
contexts. Consequently, they relate to four different wh-questions, which offers a
straightforward way to deal with the basic cases of question-answer congruence.

This paper further broadened the coverage of the analysis by extending it to
NPs with determiners and adjectives and to closely related issues like focus mark-
ing, focus projection and the relation with quantifier scope. The F-LTAG analysis
of the relation of accent placement and focus is proposed, which is required to
deal with, among others, NP internal focus marking. Another issue addressed
here is the investigation of the relation of focusing and quantifier scope. The
semantic component of LTAG as introduced by Kallmeyer & Romero [11] offers
an elegant analysis of scope ambiguities. In their analysis scope windows are
introduced for quantificational NPs by the features maxs and mins signalling
the maximal and minimal scope sides. To offer a uniform analysis of the sim-
ilarities and differences of these scope sides, this paper introduces the features
whmax and whmin as the scope window for focus and questions. The distinc-
tion of the two different scope windows gives the possibility to deal with the
relation of focusing and quantifier scope, which is left for subsequent work.
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Abstract. The Georgian Dialect Corpus – GDC (http://mygeorgia.ge/gdc)
serves as a source to document and study the regional varieties of the Georgian
language. The first steps in terms of the Georgian dialect data collection were
taken by Prof. Iost Gippert within his research projects [TITUS, ARMAZI].

The Corpus design strategy on one hand is based on an international corpus
linguistics practice and on the other hand on the traditions of the Georgian
dialectology and dialectography. The Georgian linguistic and cultural charac-
teristics are being considered in the Corpus design.

The dialect dictionaries are incorporated in the corpus for two reasons: (a) to
achieve a high level of representativeness and (b) to use the POS markers of the
dictionary lemmas for the morphological annotation of the Corpus. The present
paper deals with the practical tasks how these dictionaries complement the
dialect lexical fund and how the part of speech markers of the dictionaries are
applied in the process of morphological annotation.

1 Introduction

The Kartvelian language family consists of three Georgian languages (Georgian, Zan
and Svan) and its numerous dialects. The classification of the Georgian dialects is
based on ethnic-geographic and the linguistic principles. The dialect names coincide
the names of the region it is spread. According to various classifications there are 16–
17 Georgian dialects overall, out of which several dialects are spread outside Georgia,
they are:

• Fereydanian – spread in Iran, near Isfahan, in particular, in Fereydunshahr and
about 10 villages nearby. The dialect is spoken by 300 000 Georgians – the
descendants of internally displaced Georgians to Iran 400 years ago;

• Ingilo – Spoken by the Georgian population in Hereti, originally belonged to
Georgia, now is Azerbaijan. The population are both Christian (Kakhetian region)
and Muslim (Zaqatala) Georgians that speak the Georgian language, in particular,
Ingilo dialect.

• The Georgian language spoken by Georgians in Turkey that covers both the
Georgian dialects that are spread in originally Georgian regions that now belongs to
Turkey (Taoian, Klarj and Imerkhevian), as well as, the dialects of internally dis-
placed Georgians, particularly, the language spoken by Adjarian immigrants.
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The variety of the Georgian dialect represents the development of the Georgian
language itself. The diversity is represented by the complex phonetic, grammatical and
lexical system. The main characteristics of the literary/standard Georgian and between
the dialects are:

The Sound composition that varies from one dialect to another, and in general,
there are over 20 sounds in dialect system that are different from the standard/literary
Georgian.

The variation of grammatical features (different morphological inventory, different
usage of the common morphological inventory (affixes)), different grammatical cate-
gories: duality of number (in Khevsurian dialect); the fourth group of the Georgian verb
(Imeretian Dialect) there are three overall in standard Georgian etc.

Morphological variants as a result of complex phonetic variations (such as case
markers, verb stem markers, root morphemes etc.)

Excessive number of grammatical homonyms in dialects
Distinct syntax features (e.g. Ergative case in intransitive verbs, indirect structures etc.)
Distinct lexical funds
New word senses in common lexical fund, polysemy
Distinct collocations
New features due to foreign language influence etc. (These issues and related

examples are widely discussed in [1].
The above mentioned features enable us to make further classifications in closely

related dialects. For instance, some researchers group mountainous (Mtiuletian-
Gudamakrian, Khevsurian, Pshavian, Tush, Mokhevian) and South-Western dialects
(Samtskhetian-Javakhetian, Imerkhevian, Klarj, Taoian, Adjarian) together. These
dialects share some common features, but at the same time there is significant differ-
ence between them.

The Georgian Dialect Corpus is being created within the framework of the project –
the Linguistic Portrait of Georgia. The corpus can be queried at: http://mygeorgia.ge/
gdc/.

The size of the GDC:

• Word: 1 453 261
• Lemma: 301 203,
• Context: 199861
• Text: 3017
• The texts are recorded from 2703 informants in 812 villages in Georgia, Iran and

Azerbaijan.

The oldest data is recorded in the beginning of the XX century and the recent text
data in 2012. The working team of the GDC is in charge of the whole process, the data
collection, including field activities and incorporating the obtained data into the corpus.
It is worth mentioning that the team takes into consideration of the representativeness
during the data collection process.

Currently, the corpus incorporates 17 subsystems of the Georgian language, as well
as the samples of Laz dialects of Zan Language. The words and word phrases can be
queried via the corpus interface; the search pattern also provides access to the full texts
of the corpus.
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We are adding text data to the Corpus and working on the morphological anno-
tation, thus, the corpus can be queried in terms of its meta-textual (not linguistic)
features such as:

• Language and dialect
• The place of recording
• The speaker (informant)
• Thematic and chronological features of the texts
• Text type (narrative, poetry, speech).

We plan to add other (not linguistic) query types to the corpus, such as:

• The title of the text
• The recorder of the text
• The publication (if the text is in printed/paper format)
• Information about the informant, his/her family members (if there is a case of mixed

marriage or co-occurrence other dialect)
• Information about the informants or his/her family member immigration (if

relevant)
• Time and type of immigration (mass or individual); settlement type (contact or non-

contact, compact or non-compact) etc.

After the morphological annotation is completed, the corpus can be queried by parts
of speech and grammatical categories:

As mentioned above, currently, we work in two directions, in particular:

• Adding new text data into the corpus
• Developing morphological annotation of the corpus.

We made a decision to incorporate the dialect dictionaries in the corpus for two
reasons: first, to supplement the lexical data of the corpus by adding dictionary entries
and dictionary examples, and secondly, to use the part of speech markers of the
dictionary lemmas in the process of morphological annotation of the corpus.

2 The Representativeness in the GDC and the Dialect
Dictionaries

The representativeness is one of the main challenges and should be taken into con-
sideration in the design of a corpus. When discussing the related works with this
regard, it is worth to mention Biber and his works [2], but not all corpus linguists
implement his plans in their corpus, according to G. Leech “A seminal article by Biber
(1993) has frequently been cited, but no attempt (to my knowledge) has been made to
implement Biber’s plan for building a representative corpus” [3].

It is obvious that there are no universal rules for representativeness, but they vary
greatly from one type of corpus to another, e.g. there are different requirements for
representativeness in general and specialized corpora [4]. For instance, National cor-
pora focus on more genre and register diversities aiming at creating micro-model of a
given language.
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The dialect corpus, in general, can be classified as a specialized corpus and it deals
with the representativeness differently [5].

Our approach for dialect data collection and documentation aims to create a
valuable source for scientific research, as well as to represent the language model [6].

The concept of the representativeness in the GDC is based on the hitsorical and
cultural reality of Georgia and thus, defining its role and place in national science and
cultural paradigm. The main challenges in this direction are to fully represent the
following:

• Lexical data
• Linguistic means
• Dialect and inter-dialect strata
• Age, gender, social varieties
• Specialized, folklore variations
• Variations due to immigrations
• Peculiarities due to chronological factors
• Small marginal group speeches (Georgian Hebrews).

The content of the corpus is widely discussed in several other publications [7, 8],
however we will briefly refer it in this paper. The corpus data covers:

• The dialect texts published since the 1920s
• The audio data recorded since the 1960s
• The video and audio data recorded since the 1990s
• The dialect component of ethnographic encyclopedic data collected in 1935, and
• Non textual data – dictionaries, in particular, dictionary examples.

All the corpus related works, such as data collection and their further linguistic
processing is being performed by the working team of the Georgian Dialect Corpus.

The meta-information in the corpus can be queried in whole corpus, as well as in
individual sub corpora. The corpus interface allows limiting the search results, e.g. it
can query in separate thematic, type or geographic features.

The GDC represents all dialect data, but it is obvious that not all data will be
proportionally represented in the corpus. Such as, the language of Georgian Hebrews is
only in 12 fascicles recorded in 1937 (words: 27481, word-forms: 8881). Today, a
small number of this segment is fully assimilated, and we were not able to record the
speech of Georgian Hebrews in Israel at this stage, but we have conducted several
fruitful expeditions in Iran, Azerbaijan and Turkey, thus, the dialects represented in
these regions are widely covered in the corpus.

It is worth mentioning concerning the genre and thematic variation of the text data
of the corpus, we focus on spontaneous speech in the process of recording by
manipulating different topics; the lexicographic questionnaires and encyclopedic data
represent the different fields, and as mentioned above, we included dialect dictionaries
in the corpus.

The dialect dictionary examples are incorporated in the corpus in such a way that a
dictionary entry serves as a keyword in the corpus. We have made this decision for
several reasons; firstly, it is based on the Georgian dialect tradition, certain number of
data of collective expeditions are represented in studies and in dictionary examples, and
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secondly, the most of these dialect dictionaries were compiled by the researchers who
were speakers of these dialects and belonged to this particular cultural, social and
industrial area. Thus, the information preserved in these dictionaries is very valuable
and supplements the lexical fund of the Georgian dialects.

3 The Dictionaries and the Problem Related
to Morphological Annotation of the Corpus

The morphological analysis concept for the GDC is based on the principles of literary
(standard) language analysis. Annotation is carried out using the material of the sep-
arate dialects in order to avoid grammatical homonymy among the dialects.

The Georgian language is of complex, inflectional and agglutinative nature. Vast
amount of flexions categories of verbs, nouns, adjectives and numerals should be
described to build up the computer model of Georgian morphology. For example, we can
meet 66 (as for dialects, even more) members in the flexions paradigm of only one verb
lexeme, and in the paradigm of declension of the noun, given all possible prepositions
and particles, the number of forms can rise up to 200.

We apply morphological analysis based on the computational lexicon to ensure its
high level. This lexicon is structured using the lists of lemmas and affixes which are
interrelated through the identifiers, corresponding to the patterns of representation of
the morphotactics. Modeling the morphotactical interrelations of the lemmas and
affixes in the system is carried out with help of the Georgian language morphological
generator algorithm which we have already described earlier.

We have been working on the Georgian language morphological analyzer since
2003.

The Georgian automatic explanatory-combinatorial dictionary is compiled, repre-
senting definition, morphological, syntactic and semantic fields of words. The mor-
phological computational lexicon (GeoTrans), enclosing about 100 000 basic (modern
Georgian literary) language lexemes is incorporated in the program application of this
dictionary. Functioning of this application depends on the morphological generator,
which in its turn depends on morphotactics data of each unit in the computational
lexicon. The morphological generator is designed to generate a separate lexeme as well
as its paradigm. For the unknown word forms not described in the lexicon, the system
provides one or some potential patterns of word formation.

The computational lexicon enables the dictionaries of the basic language and of its
dialects to be created and supplemented/enriched with new lexemes within it. In fact,
this system represents a formal model of accumulating knowledge of language. It is
invariant with regard to the language and it enables adding a new language without
changes in the interface and program code. It becomes possible to carry out annotation
of the Georgian dialect corpus semi-automatically, using GeoTransTools (program
instruments of the morphological analyzer), realized through the system.

In our earlier works we have thoroughly discussed the concept of the morpho-
logical analyzer of the Georgian literary language [9, 10]. In this article we are rep-
resenting some general schemes and consider some issues related to creating the dialect
module of the analyzer.
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4 Descriptions of the Database Tables of the Computational
Lexicon

The architecture of the computational lexicons of the morphological analyzer rests
upon the relational databases. Figure 1 represents the interrelations between them.

The basic language computation lexicon is maintained in the tables of the relational
databases: (1) The table of the lemmas from the basic language dictionary -
Baz_LemVoc, (2) The database table of the affixes of the lexemes formation – BazAfix
and (3) The database table of the identifiers of the word formation rules of the basic
language – Baz_MoFlID.

Now we are going to describe each table of the relational databases of the com-
putational lexicon separately:

(1) Baz_LemVoc – All lemmas from the basic language computational lexicon are
maintained in the table of lemmas of the basic language dictionary and each lexicon
entry contains lemma characteristics (see Fig. 1), as follows:

N – lemma identifier;
Word – lemma;
Word_V – variation of a lemma;

Fig. 1. The structure of the databases of the computational morphological lexicon
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(The future form of a verb that at the same time is a lemma can be often represented
by two parallel lexemes – with or without the preverb. To compactly record such a
situation, a marker of the lemma variation is introduced _ Word_V).

ReWord_V – inversive entry of the lemma variation (e.g.: for lemma çero it will be
oreç). Inversive entries of lemmas and affixes facilitate the search for lemmas and
affixes in the databases based on endings. This speeds up the process of morpho-
logical analysis considerably;

Fn1-Fn7 – identifiers of the lemma formatting paradigm. One lemma can have
more than one marker and it can simultaneously belong to many lexemes, e.g. da
‘sister/and’ (noun and conjunction), asi ‘a hundred’ (is a numeral and a noun);
sakidi ‘hanging/hanger’ (an adjective and a participle); gverdçit’eli (red-sided/
Gverdtciteli) (an adjective and a proper noun) etc. Those markers are related to
RulNu fields of BazAfix and Baz_MoFlID database tables;

ReWord – inversive entry of the lemma;
Dn1-Dn7 – the identifiers of the word-forming patterns consistent with the lemma.

(2) BazAfix – the database table of the affixes of the lexemes formation maintains all
possible affixes of all the lemmas in the dictionary (see Fig. 1 and Table 1). Each entry
contains:

N – entry identifier;
ReSuF – inversive entry of the suffix unit of the lexeme;
RulNu – the identifier of the word-form paradigm corresponding to the affix;
BSu – suffix unit of the lemma corresponding to the lexeme;
BPr – prefix unit of the lemma corresponding to the lexeme;
PrF – prefix unit corresponding to the lexeme;
SuF – suffix unit of the lexeme corresponding to the lexeme;
SinF – loss affix unit corresponding to the lexeme;
InF – infix unit corresponding to the lexeme;
Poz – position of the loss affix corresponding to the infix unit in the lexeme;
IDMF – identifier of the flexion rule corresponding to the set of the lexeme affixes.

Using the database tables of the lemmas and affixes the identifier of word-forming
realization of any word form of any lemma is possible.

Here are some examples of entries of any lexeme given in the BazAfix database
table of the relational databases (see Table 1).

Suppose, we have a lemma from the table of Baz_LemVoc relational databases of
lexicon, çarmoačens ‘demonstrates’ (see Fig. 1 and Table 1.) and we want to receive
any lexeme of this lemma according the word-forming identifier IDMF, e.g. IDMF_
33259. We find affixes which correspond to this identifier in the BazAfix database table
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and also, the position of the loss affix/infix in the lexeme. Then we conduct operations
in the following order:

• Basic suffix unit Bsu -ens cut from the lemma, in this step we will have çarmoač;
• In the position Poz - 2 (it is regarded from the end of the word-form) from the

received form will be extracted the string SinF –a- (in this case this is a letter) and
we will have çarmoč;

• In the same position Poz – 2 of the received word-form inserts the string InF –gve -
and we will have - çarmogveč;

• The resulted word-form adds concatenation SuF -ina and we have çarmogvečina;
• By the end of the received word-form will be concatenated SuF -ina and we will

have çarmogvečina;
• # _ denotes zero affix and naturally, its presence in the affix field implies that no

operation can be conducted. In the given example such cases are:
• BPr - # - the affix which must be extracted from the beginning of the resulted word-

form
• PrF - # - the affix which must be added to the beginning of the resulted word-form.
• i.e. finally we have the lexeme - çarmogvečina ‘if we have demonstrated’.

Table 1. The entries in the table of the relational databases - BazAfix on the examples of
lexemes and their corresponding lemmas.
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The entries from the Table 1 for the lexemes, daçere ‘you write’ and çarmogvečina
‘if we have demonstrated’ with the characteristic data we noted, mean the following:

Lexeme – lexeme daçere ‘write’;
Lemma – lemma of word-form daçere ‘write’ – (da)çers = çers/daçers ‘will write’.
Entries in the fields of the relational databases table BazAfix:
ReSuF – -e;
BSu – -s;
BPr – (da)- = da-/#;
PrF – (da)- = da-/# preverb is given in the parenthesis. It attaches to verb to denote
future tense forms. It is the case where one identifier corresponds to two forms çers/
daçers ‘wtites/will write’ _ V fut 3p sg and at the same time the verb form without a
preverb is homonymous to the verb form of the present tense singular, III person
(çers ‘writes’ _ V prs 3p sg çers _ V fut perf 3p sg);
SuF – -e;
SinF – #;
InF – #;
RulNu – vz01.2;
IDMF – IDMF_62060;
Poz – 0
Lexeme – lexeme çarmogvečina
Lemma – lemma of word-form çarmogvečina ‘if we have demonstrated’ – çar-
moačens ‘demonstrates’. That is the case, where one identifier corresponds to one
entry in the database and there is no homonym in the present forms. Entries from
the fields of the relational databases BazAfix table:
ReSuF – ani;
BSu – ens;
BPr – #;
PrF – #;
SuF – ina;
SinF – a;
InF – gve;
RulNu – v0a1.19;
IDMF – IDMF_ 33259;
Poz – 2.

In BazAfix table of the relational databases of the dictionary, homonymic lexemes
have one common dictionary entry with different markers of the flexion paradigm.
Such markers in the Table 1 (provided above) are da ‘sister/and’ and unda ‘wants/
must’. In the examples numbered 3–4, 5–6 and 7–8 are shown the entries of hom-
onymic lexemes, which have common lexemes and different lemmas.

(3) Baz_MoFlID – in the table of the relational databases lexicon of the identifiers of
the word forming rules of the basic language, all set of the grammemes which corre-
spond to all possible morphological phenomenon, are maintained, such as: “V impf 3p
sg, N Nom pl” and others (see Fig. 1 and Table 2). Each entry of the table of relational
database lexicon contains:
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N – entry identifier;
IDMF – the identifier of the flexion rule corresponding to the set of the word-form
affixes of the lexeme;
RulNu – the identifier of the word-form paradigm corresponding to the affix;
NoLex_1 – the number of the lexeme in the flexion paradigm, corresponding to the
identifiers: IDMF and RulNu;
LexFeat_1 – the marker of the characteristic of lexeme of the set of grammemes,
which corresponds to the identifiers: IDMF, RulNu and NoLex_1, in Georgian;
LexFeat_2 –the name of the set of the lexeme characteristic grammemes, which
corresponds to the identifiers: IDMF, RulNu and NoLex_1, in Georgian.

5 Description of the Dialectic Morphological Analyzer
Module

The dialectic computational lexicon is the new component, added to the Georgian
language morphological analyzer and is now in the process of developing. By its means
modification process of the GeoTrans into the multi-system analyzer is ongoing. The
computational lexicon of the Georgian dialectic analyzer maintains in the tables of the
databases: (1) the lexemes databases table of the dialectic computational lexicon –

Dia_WordVoc, (2) the table of the set of word forming affixes of the dialect dictio-
nary – DiaAfix and (3) the table of the identifiers of the dialect dictionary relational
databases – Dia_MoFlID. In order to better understand the algorithm of the dialect
module of the morphological analyzer we represent some tables: (see Fig. 1 and
Table 3).

(1) Dia_MoFlID – Every entry of the databases table of the dialectic computational
lexicon contain:

N – unique identifier of the lexeme;
Word – Lexeme. Providing first lexemes and not the lemmas to the dialectic
dictionary, is conditioned by the fact that quite often in the articles of the existing
dialect dictionaries lemma is not used as a basic word. Such forms in the analyzer
are considered hypothetic lemmas (we call the forms hypothetic if they are not
evidenced in the available dialect texts and dictionaries) such lemma in accordance
of the literary analyzer is given part of speech marker which is also hypothetic.
Such examples are given in the fourth and fifth lines of the Table 3, for the lexemes
magizgni and magigni (both correspond to the possessive case of the literary
pronoun e.g. ‘that’, with the suffix - magisgan – ‘because of that’;
Word_V – phonetic variation of the lexeme;
ReWord_V – inverse entry of the lexeme’s phonetic variation;
WoVir_PS – the of part of speech marker of the hypothetic lexeme, coinciding
with the marker of the corresponding literary lemma part speech marker;
Word_Lem – the lemma corresponding to the lexeme;
ReWord_Lem – inverse entry of the lemma corresponding to the lexeme;
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Table 2. Entries in the table Baz_MoFlID of the relational databases of the dictionary on the
examples of the lexemes and their corresponding lemmas.

92 M. Beridze et al.



Vir_Fn1-Vir_Fn4 – the identifiers of the flexion paradigm which correspond to the
hypothetic lemma;
WoDi_Fn1-WoDi_Fn4 – the identifiers of the dialect flexion paradigm which
correspond to the lemma;
Vir_Dn1-Vir_Dn4 – the identifiers of the derivative word forming paradigm which
correspond to the hypothetic lemma;
WoDi_Dn1 – WoDi_Dn4 – the identifiers of the dialect derivative word forming
paradigm which correspond to the lemma.

(2) DiaAfix – the database table of the word forming affixes complex. Each entry
contains:

N – entry identifier;
ReSuF – inversive entry of the suffix unit corresponding to the dialect lexeme;
RulNu – the identifier of the word-form paradigm corresponding to the dialect
affix;
BSu – the suffix unit of the lemma corresponding to the dialect lexeme;
BPr – the prefix unit of the lemma corresponding to the dialect lexeme;
PrF — the prefix unit corresponding to the dialect lexeme;
SuF – – the suffix unit of the dialect lexeme;
SinF – loss affix which corresponds to the dialect lexeme;
InF – infix unit corresponding to the dialect lexeme;
Poz – loss affix/position of the infix unit which corresponds to the dialect lexeme;
IDMF – the identifier of the flexion rule corresponding to the set of the word-form
affixes of the dialect lexeme.

(3) Dia_MoFlID – the database table of the identifiers of the word forming rules. Each
entry of the table contains:

N – entry identifier;
IDMF – the identifier of the flexion rule corresponding to the set of the word-form
affixes of the dialect lexeme;
RulNu – the identifier of the word forming pattern corresponding to the dialect affix;
NoLex_1 – the number of the lexeme in the flexion paradigm corresponding to
dialectic identifiers IDMF and RulNu;
LexFeat_1 – the name of the set of the lexeme characteristics corresponding to the
dialect identifiers IDMF, RulNu and NoLex_1;

Table 3. The entries in the databases table of dialects - Dia_WordVoc on the examples of the
lexemes.
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LexFeat_2 – the marker of the name of the lexeme characteristics corresponding to
the dialect identifiers: IDMF, RulNu and NoLex_1.

The procedure of compiling the dictionary for a dialect includes 4 stages:

(1) Supplementing the dictionary of lemmas (basic forms) with help of the existing
(if such) dictionaries;

(2) Morphological annotation based on the literary (standard) and dialectic
dictionaries;

(3) Uniting all unrecognized word forms into clusters, to which then, the hypothetic
information will correspond and refer, coming from the lexeme pattern, con-
cerning part of speech, lemma and other characteristics.

(4) Assessing the best hypothesis and supplement new lemmas and rules of word
formation to the dictionary of the morphological analyzer of the given dialect.

In order to select the dialectic texts automatically, besides enriching the dictionary
with lexemes, it became necessary to consider new derivative and inflectional varia-
tions, which, as mentioned above, triggers diverse grammar, phonetic and other pro-
cesses in the dialects.

6 Program Algorithm for Morphological Analysis

The programs for morphological analyses of the literary language and the dialects are
realized as separate utilities in the system. In both cases the algorithm of analysis of the
provided word form are the same:

(1) All the variations of the hypothetic lemma are searched. All the lexemes having
identical root ending (“tail”) are grammatically analyzed. The lemma will restore
from the word form under analysis in accordance with database table of affixes
(BazAfix/DiaAfix) and all the ending variations will be considered.

(2) For each variation of the received lemmas beginning from the longest, the cor-
responding lemma is searched in the dictionary of the lemmas (LemVoc/
DiaWordVoc).

(3) For each variation of the found lemma according database table of affixes,
(BazAfix/DiaAfix), the word forming pattern marker RulNu and the marker of
the set of word forming affixes IDMF, in the database table of identifiers
(Baz_MoFlID/Dia_MoFlId) the abbreviation of the name of the set of lexeme
characteristics LexFeat_1 is searched for and refers to the word form under
analysis. Optionally, it is possible to refer directly the name of the set in Georgian
(see example 1).

(4) If the variation of the lemma does not consider any “nearest” dictionary lemma, it
means that the word under analysis is not provided in the dictionary as a given
lemma. In that case according to the given variation of the lemma, the ending and
the lexeme which corresponds the “nearest” lemma in the dictionary, the hypo-
thetic lexeme is generated - the pattern of word forming for an unknown word.
In case such generating is successful, (if it fully coincides with the analyzed one)
this hypothesis is delivered to the morphological analyzer of the lexeme.
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(5) The successful variations of the analysis will be saved as:

the word-form: {lemma 1, distinguish variation 1}
{lemma 2, Distinguish variation 2}
{lemma 3, Distinguish variation 3}
And so on.

Furthermore the addition of the lemmas in the dialect dictionary happens according
the following pattern:

(1) If the lemma and the marker of its characteristics are hypothetic and at the same time
in the dialect dictionary there occurs the same lemma and the marker of the same
characteristics for another lemma, then the possibility of this hypothesis is very close
to the truth, and this increases the size of so called calculator of “productivity”.

(2) If even a single variation of the analysis can be found among the lexemes of the
same size, we move to point 4 with the successful result. If we have no successful
points then the required length of the “tail” decreases with one. If even after that
the required length of the “tail” becomes less than two, then we go to point 5 with
rejection and if not – then we go to point 3.

(3) As it is very rare in the dialects to have possibility of generating the full paradigm
out of the acknowledged forms, generated paradigms are unified and filtered based
on their productivity and the paradigm of the highest level productivity is selected.

(4) Successful result, procedure complete.
(5) Unsuccessful result, complete procedure.

We describe the process of morphological annotation of the Upper Imeretian col-
lection of the GDC based on the Upper Imeretian Dictionary [11]. The annotation is
based on GeoTrans (see [12]), an automated morphological dictionary of Standard
Georgian. At the present experimental stage of the morphological annotation of the
GDC, the following has been achieved:

• Formatting of the dictionary: development of the digital version of the dictionary
and creation of a list of lemmas (totally 5671 lemmas)

• Automated selection and part-of-speech tagging of the forms from the list of
lemmas of the dialect dictionary, coinciding with those of the standard. Totally 784
such lemmas were detected; a list of homonyms was identified, totaling 27 items.
After this process, 4860 ‘unknown’ entries in the list of lemmas were manually
attached to part-of-speech tag.

• By means of the marked lists, the knowledge base of the automated morphological
dictionary of Standard Georgian was enriched. This implies that a subsystem for
morphological modeling of a given dialect variety was added to GeoTrans. In this
system, each dialect form will be tagged in accordance with a respective part of
speech and, frequently, marked in accordance with an inflectional pattern by means
of which word forms are lemmatized.

• At the next stage, the GeoTrans standard language analyzer enabled us to select
the lemmas from the textual data of the corpus, coinciding with those of the
standard language, amounting to 3331 lemmas.

• The GeoTrans dialect analyzer specific dialect lemmas were selected and tagged,
472 lemmas in total.
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• By means of the standard language analyzer, all the word forms underwent
complete morphological analyses, coinciding with those of the standard, which
amounted to 9285 forms. Here too, homonymous (528) and non-homonymous
(8757) forms will be similarly distinguished.

• Following that, by means of lemmas and standard inflectional patterns, lemmati-
zation was performed and dialect (specific) word forms weremorphologically tagged.

7 Conclusion

Equipping dialect dictionaries with morphological information and in such a way
enriching the morphological knowledge base by means of the automated standard
analyzer is an optimistic perspective for the automation of dialect corpus analysis. The
concept of morphological annotation of the GDC envisages a differentiated approach to
text data: to present dialect (specific) vocabulary, vocabulary common with the stan-
dard language, inflectional and derivational patterns common with the standard lan-
guage, dialect-specific inflectional and derivational patterns as separate ‘regions’ and
then, to undertake the annotation strategy respectively.
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Abstract. In this paper we investigate the fragment of intuitionistic
logic which only uses conjunction (meet) and implication, using finite
duality for distributive lattices and universal models. We give a descrip-
tion of the finitely generated universal models of this fragment and give a
complete characterization of the up-sets of Kripke models of intuitionistic
logic which can be defined by meet-implication-formulas. We use these
results to derive a new version of subframe formulas for intuitionistic logic
and to show that the uniform interpolants of meet-implication-formulas
are not necessarily uniform interpolants in the full intuitionistic logic.

Keywords: Duality · Universal models · Intuitionistic logic · Heyt-
ing algebras · Free algebras · Implicative semilattices · Definability ·
Interpolation

1 Introduction

Heyting algebras are the algebraic models of intuitionistic propositional logic,
IPC. In this paper we will be concerned with the syntactic fragment of IPC
consisting of the formulas which only use the connectives of conjunction (∧) and
implication (→), but no disjunction (∨) or falsum (⊥). The algebraic structures
corresponding to this fragment are called implicative semilattices1. A result due
to Diego [1] says that the variety of implicative semilattices is locally finite, i.e.,
finitely generated algebras are finite, or equivalently, the finitely generated free
algebras are finite. In logic terms, this theorem can be expressed as saying that
there are only finitely many equivalence classes of (∧,→)-formulas in IPC.

One of the key results in this paper is a dual characterization of a (∧,→)-
subalgebra of a given Heyting algebra generated by a finite set of elements (The-
orem 26). This theorem leads to Diego’s theorem and a characterization of the
1 In less recent literature, these are also called Brouwerian semilattices.
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n-universal models of the (∧,→)-fragment of IPC (Theorem 27) as submodels
of the universal model, in the same spirit as the proof by Renardel de Lavalette
et al. in [2]. The first characterization of this model was obtained by Köhler [3]
using his duality for finite implicative meet-semilattices. Our slightly different
approach in this paper also enables us to obtain new results about the (∧,→)-
fragment of IPC. In particular, in Theorem 29, we give a full characterization of
the up-sets of a Kripke model which can be defined by (∧,→)-formulas. Since
our characterization in particular applies to the n-universal model of IPC, this
may be considered as a first step towards solving the complicated problem of
characterizing the up-sets of the n-universal models which are definable by intu-
itionistic formulas (also see our more detailed remarks in Sect. 5). Building on
this result, we use the de Jongh formulas for IPC to construct formulas that play
an analogous role in the (∧,→)-fragment. Finally, we use the characterization of
(∧,→)-definable subsets of the n-universal models of IPC to show that a uniform
interpolant of a (∧,→)-formula in intuitionistic logic may not be equivalent to
a (∧,→)-formula.

A word on methodology. The two essential ingredients to our proofs are,
on the one hand, Birkhoff duality for finite distributive lattices and, on the
other hand, the theory of n-universal models for IPC [4,5]. Our methods in this
paper are directly inspired by the theory of duality for (∧,→)-homomorphisms
as developed in [3,6–8], and also by the observations about the relation between
the n-universal models and duality for Heyting algebras in [9]. However, we made
an effort to write this paper in such a way to be as self-contained as possible, and
in particular we do not require the reader to be familiar with any of these results.
In particular, we give a brief introduction to duality for finite distributive lattices
and its connection to Kripke semantics for IPC in Sect. 2, and we do not need to
go into the intricacies of duality for implicative meet-semilattices, instead opting
to give direct proofs of the duality-theoretic facts that we need.

The paper is organized as follows: in Sect. 2 we present the necessary prelim-
inaries about IPC and Heyting algebras in the context of duality for distributive
lattices; in Sect. 3 we study the meet-implication fragment of IPC and prove our
main theorems mentioned above; in Sect. 4 we apply these results to (∧,→)-
de Jongh formulas and analyze semantically the uniform interpolation in the
(∧,→)-fragment of IPC. In Sect. 5 we summarize our results and give sugges-
tions on where to go from here.

2 Algebra, Semantics and Duality

We briefly outline the contents of this section. In Subsect. 2.1, we recall the
definitions and basic facts about adjunctions between partially ordered sets,
Heyting algebras, and implicative meet-semilattices. Subsect. 2.2 contains the
preliminaries about duality theory that we will need in this paper. In Subsect. 2.3
we show how to define the usual Kripke semantics for IPC via duality, and in
Subsect. 2.4 we recall how the universal and canonical models for IPC are related
to free finitely generated Heyting algebras via duality.
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2.1 Adjunction, Heyting Algebras, Implicative Meet-Semilattices

Since the notion of adjunction is crucial to logic in general, and in particular to
intuitionistic logic, we recall some basic facts about it right away. An adjunction
can be understood as an invertible rule that ties two logical connectives or terms.
The typical example in intuitionistic logic is the adjunction between ∧ and →,
which can be expressed by saying that the following (invertible) rule is derivable
in IPC.

(1)

Recall that an adjunction between partially ordered sets A and B is a pair of
functions f : A � B : g such that, for all a ∈ A and b ∈ B, f(a) ≤ b if, and only
if, a ≤ g(b); notation: f � g. In this case, we say that f is lower adjoint to g and
g is upper adjoint to f . Note that the derivability of rule (1) in IPC says exactly
that, for any ψ, the function ϕ 	→ ϕ∧ψ on the Lindenbaum algebra for IPC (cf.
Example 3(b) below) is lower adjoint to the function χ 	→ ψ → χ. The following
general facts about adjunctions are well-known and will be used repeatedly in
this paper.

Proposition 1. Let A and B be partially ordered sets and let f : A � B : g be
an adjunction. The following properties hold:

1. If f is surjective, then fg = idB, and therefore g is injective and the image
of g is {a ∈ A | gf(a) ≤ a};

2. The function f preserves any joins (suprema) which exist in A and the func-
tion g preserves any meets (infima) which exist in B;

3. For any b ∈ B, g(b) is the maximum of {a ∈ A | f(a) ≤ b}. In particular, the
fact that g is upper adjoint to f uniquely determines g.

Moreover, if C and D are complete lattices and f : C → D is a function which
preserves arbitrary joins, then f has an upper adjoint.

Proof. Straightforward; cf., e.g., [10, 7.23–7.34]. 
�
Recall that a tuple (A,∧,∨,→, 0, 1) is a Heyting algebra if (A,∧,∨, 0, 1) is
a bounded lattice, and the operation → is upper adjoint to ∧, i.e., for any
a, b, c ∈ A,

a ∧ b ≤ c ⇐⇒ a ≤ b → c. (2)

The equation (2) says that b → c is the maximum of {a ∈ A | a ∧ b ≤ c};
therefore, a lattice admits at most one “Heyting implication”, i.e., an opera-
tion → such that it becomes a Heyting algebra. The lattices underlying Heyting
algebras are always distributive (in fact, for any a ∈ A, the function b 	→ a ∧ b
preserves any join that exists in A, since it is a lower adjoint). All finite distrib-
utive lattices admit a Heyting implication. A Heyting homomorphism is a map
between Heyting algebras that preserves each of the operations. An implicative
meet-semilattice is a “Heyting algebra without disjunction”. More precisely, an
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implicative meet-semilattice is a tuple (A,∧,→) such that (A,∧) is a semilat-
tice, and condition (2) holds. We will write (∧,→)-homomorphism to abbreviate
“homomorphism of implicative meet-semilattices”. Note that any implicative
meet-semilattice has a largest element, 1, which is preserved by any (∧,→)-
homomorphism. Also note that finite implicative meet-semilattices are distrib-
utive lattices, but (∧,→)-homomorphisms do not necessarily preserve joins.
However, surjective (∧,→)-homomorphisms do preserve join (cf. [3, Lemma 2.4
and the remark thereafter]):

Lemma 2. If f : A → B is a surjective (∧,→)-homomorphism between Heyting
algebras, then f is join-preserving.

Proof. First of all, we have 0B = f(a) for some a ∈ A, and 0A ≤ a, so that
f(0A) = 0B . Now let a, a′ ∈ A. Pick c ∈ A such that f(c) = f(a) ∨ f(a′). Now

f(a ∨ a′) → (f(a) ∨ f(a′)) = f(a ∨ a′) → f(c)
= f((a ∨ a′) → c)
= f((a → c) ∧ (a′ → c))
= (f(a) → f(c)) ∧ (f(a′) → f(c))
= (f(a) ∨ f(a′)) → f(c) = 1,

so f(a ∨ a′) ≤ f(a) ∨ f(a′). The other inequality holds because f is order-
preserving. 
�
Example 3. (a) An important example of a Heyting algebra is the collection
of upward closed sets (‘up-sets’) of a partially ordered set (X,≤), ordered by
inclusion; we denote this Heyting algebra by U(X). The Heyting implication of
two up-sets U and V is given by the formula

U → V = (↓(U ∩ V c))c, (3)

that is, a point x is in U → V if, and only if, for all y ≥ x, y ∈ U implies y ∈ V .
The reader who is familiar with models for IPC will recognize the similarity
between this condition and the interpretation of a formula ϕ → ψ in a model;
we will recall the precise connection between the two in 2.3 below.

(b) Another example of a Heyting algebra, of a more logical nature, is that
of the Lindenbaum algebra for IPC; we briefly recall the definition. Fix a set of
propositional variables P and consider the collection F (P ) of all propositional
formulas whose variables are in P . Define a pre-order � on F (P ) by saying, for
ϕ,ψ ∈ F (P ), that ϕ � ψ if, and only if, ψ is provable from ϕ in IPC. The Lin-
denbaum algebra is defined as the quotient of F (P ) by the congruence relation
≈ := (�) ∩ (�)−1. The Lindenbaum algebra is the free Heyting algebra over
the set P , i.e., any function from P to a Heyting algebra H lifts uniquely to
a Heyting homomorphism from the Lindenbaum algebra over P to H. We will
denote the free Heyting algebra over P by FHA(P ). Note that the same construc-
tion can be applied to the (∧,∨)- and (∧,→)-fragments of IPC to yield the free
distributive lattice FDL(P ) and the free implicative meet-semilattice F∧,→(P ),
respectively. 
�
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2.2 Duality

We briefly recall the facts about duality that we will need. Let D be a distributive
lattice. We recall the definition of the dual poset, D∗, of D. The points of D∗
are the prime filters of D, i.e., up-sets F ⊆ D which contain finite meets of their
subsets and have the property that if a ∨ b ∈ F , then a ∈ F or b ∈ F . The
partial order on D∗ is the inclusion of prime filters. The map η : D → U(D∗)
which sends d ∈ D to {F ∈ D∗ | d ∈ F} is (assuming the axiom of choice) an
embedding of distributive lattices, which is called the canonical extension of D.
If D is finite, then η is an isomorphism, so that any finite distributive lattice is
isomorphic to the lattice of up-sets of its dual poset. The assignments X 	→ U(X)
and D 	→ D∗ between finite posets and finite distributive lattices extend to a
dual equivalence, or duality, of categories: homomorphisms from a distributive
lattice D to a distributive lattice E are in a natural bijective correspondence
with order-preserving maps from E∗ to D∗. A homomorphism h : D → E is
sent to the map h∗ : E∗ → D∗ which sends F ∈ E∗ to h−1(F ), and an order-
preserving map f : X → Y is sent to the homomorphism f∗ : U(Y ) → U(X)
which sends an up-set U of Y to f−1(U).

If X and Y are posets, it is natural to ask which order-preserving maps
f : X → Y are such that their dual f−1 : U(Y ) → U(X) is a Heyting homomor-
phism. It turns out that these are the p-morphisms, i.e., the order-preserving
maps which in addition satisfy the condition: for any x ∈ X, y ∈ Y , if f(x) ≤ y,
then there exists x′ ≥ x such that f(x′) = y.

To end this subsection, we recall how duality yields a straight-forward descrip-
tion of the free finitely generated2 distributive lattice, FDL(P ). In any category
of algebras, the free algebra over a set P is the P -fold coproduct of the one-
generated free algebra. Therefore, since duality transforms coproducts into prod-
ucts, the dual space FDL(P )∗ is the P -fold power of the poset FDL({p})∗, the
dual of the one-generated free algebra. Note that FDL({p}) is the three-element
chain {0 ≤ p ≤ 1}, so its dual is the two-element poset 2 = {0, 1}. Since finite
products in the category of finite posets are simply given by equipping the Carte-
sian product with the pointwise order, it follows that FDL(P )∗ = 2P . Therefore,
the free distributive lattice over a finite set P is the lattice of up-sets of 2P ; in
a formula, FDL(P ) = U(2P ).

2.3 Semantics via Duality

Notation. Throughout the rest of this paper, we fix a finite set of propositional
variables P = {p1, . . . , pn}. We denote the free algebras over P by FHA(n),
FDL(n), etc.

In this paper, a frame is a poset (M,≤). A model is a triple (M,≤, c), where
(M,≤) is a poset and c, the colouring, is an order-preserving function from M

2 Essentially the same argument as the one sketched in this paragraph can be used to
give a description of an arbitrary, not necessarily finitely generated, free distributive
lattice, but we will not need this in what follows.
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to 2n. The colouring c yields, via duality, a distributive lattice homomorphism
c∗ : U(2n) → U(M). As noted at the end of 2.2, U(2n) is the free distributive
lattice over the set of generators n. By the universal property of the free Heyt-
ing algebra, the lattice homomorphism c∗ has a unique extension to a Heyting
homomorphism, v, from the free n-generated Heyting algebra to the Heyting
algebra U(M), as in diagram (4).

(4)

A point x in a model M is said to satisfy a formula ϕ if, and only if, x ∈ v(ϕ); we
employ the usual notation: M,x |= ϕ. Note that, as an alternative to the above
algebraic description, one may equivalently define the satisfaction relation for
models by induction on the complexity of formulas; see e.g. [5, Definition 2.1.8].
A model is said to satisfy ϕ if every point of the model satisfies ϕ. A p-morphism
f from a model M to a model N is a p-morphism between the underlying frames
of M and N which in addition satisfies, for any x ∈ M , cN (f(x)) = cM (x). From
the above definitions, it is clear that p-morphisms preserve truth, i.e., M,x |= ϕ
if, and only if, N, f(x) |= ϕ, for any formula ϕ. A generated submodel of M
is a submodel M ′ such that the inclusion f : M ′ ↪→ M is a p-morphism, or
equivalently, such that M ′ is an up-set of M . We say M ′ is a p-morphic image
of M if there exists a surjective p-morphism f : M � M ′.

Recall that a general frame is a tuple (M,≤, A), where (M,≤) is a poset
and A is a subalgebra of the Heyting algebra of up-sets of M . The elements of
the algebra A are called the admissible sets of the general frame. An important
subclass of the class of general frames consists of the (M,≤, A) for which (M,≤)
is the dual poset of the Heyting algebra A; these are precisely the descriptive
general frames.3

An admissible colouring on a general frame (M,≤, A) is a colouring c :
M → 2n with the additional property that, for each 1 ≤ i ≤ n, the set
{x ∈ M | c(x)i = 1} is admissible. By the latter description and duality, admissi-
ble colourings c on a descriptive frame (M,≤, A) correspond to homomorphisms
c∗ : FDL(n) → A. Note that, in this case, the semantics map v defined in (4)
also maps into A, since A is a sub-Heyting-algebra of U(M).

We finally recall a few definitions and observations about so-called “borders”
in Kripke models, that we will need in what follows.

Definition 4. Let M be a Kripke model.

1. If A is an up-set in a Kripke frame (M,≤), then a border point of A is a
maximal element of the complement of A, i.e., a point u which is not in A,
while all its proper successors are in A.

3 For an equivalent characterization of descriptive general frames as the ‘compact
refined’ general frames, cf. e.g. [5, Definition 2.3.2, Theorem 2.4.2].
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2. If ϕ is a propositional formula, then a point u is called a ϕ-border point if u
is a border point of v(ϕ), the subset of M where ϕ holds.

3. We say that M is a model with borders, or that M has borders, if, for every
x ∈ M such that x �|= p, there is a p-border point u above x.

Proposition 5. 1. Every image-finite model has borders.
2. Every descriptive model has borders.

Proof. Item (1) is straightforward. For the proof of (2) see, e.g., [5, Theo-
rem2.3.24]. 
�

2.4 Canonical and Universal Models

The dual poset of the free n-generated Heyting algebra, FHA(n), is called the
canonical frame and is denoted by C(n). In logic terms, points in the canon-
ical frame are so-called “theories with the disjunction property”. The canon-
ical frame carries a natural colouring c, which is the dual of the inclusion
FDL(n) ↪→ FHA(n). Concretely, c(x)i = 1 if, and only if, the variable pi is
an element of x. The model thus defined is called the canonical model, and is
also denoted by C(n).4

Note that, by the embedding η : FHA(n) ↪→ U(C(n)), any element ϕ of
FHA(n) defines an up-set η(ϕ) = {x ∈ C(n) | ϕ ∈ x} of C(n). Since η is in
particular a Heyting homomorphism that extends c∗, it is equal to the semantics
map v for C(n) defined in (4). Concretely, this means that, for any x ∈ C(n)
and ϕ ∈ FHA(n), we have C(n), x |= ϕ if, and only if, ϕ ∈ x; this fact is often
referred to as the truth lemma.

Let ̂FHA(n) be the profinite completion of FHA(n); recall from [11, The-
orem 4.7] that ̂FHA(n) is the Heyting algebra of up-sets of C(n)fin := {x ∈
C(n)|↑xis finite}, the image-finite5 part of C(n). The generated submodel C(n)fin
of C(n) is known as the universal model and denoted by U(n).

Lemma 6. The map v : FHA(n) → U(U(n)) is injective.

Proof. Cf., e.g., [5, Theorem 3.2.20]. 
�
Importantly, the universal model can be described by an inductive top-down
construction, as follows.

Theorem 7. The universal model U(n) is the unique image-finite model satis-
fying all of the following conditions:

1. there are 2n maximal points with mutually distinct colours in U(n);
2. for any x ∈ U(n) and c′ < c(x), there is a unique point x′ ∈ U(n) with

c(x′) = c′ and ↑x′ = {x′} ∪ ↑x;

4 The canonical frame and model are also known as the Henkin frame and model.
5 Recall that a model M is called image-finite if, for each w ∈ M , the set of successors

of w is finite.
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3. for any finite antichain S ⊆ U(n) and c′ ≤ min{c(x) | x ∈ S}, there is a
unique point x′ ∈ U(n) with c(x′) = c′ and ↑x′ = {x′} ∪ ⋃

x∈S ↑x.

Proof. Cf., e.g., [5, Sect. 3.2]. 
�
The following important fact states a ‘universal property’ for the universal model.
Following the usual terminology (cf., e.g., [5, Sect. 3.1]), the depth of a point w
in a frame M is the maximal length of a chain in the generated subframe ↑w.
We say that a frame M has finite depth ≤ m if every chain in M has size at
most m.

Proposition 8. If M is a model on n variables of finite depth ≤ m, then there
exists a unique p-morphism f : M → U(n). Moreover, the image of f has
depth ≤ m.

Proof.6 We prove the statement by induction on m. First let M be a model of
depth 0. In this case, there is clearly a unique p-morphism from M to U(n),
namely the one which sends each point in M to the unique maximal point in
U(n) of the same colour. Now let M be a model of depth m + 1, for m ≥ 0. Let
x ∈ M be arbitrary; we will define f(x) ∈ U(n). Note that, for every y > x, the
submodel My := ↑y generated by y has depth ≤ m. Thus, for each y > x, let
fy : My → U(n) be the unique p-morphism; the image of fy has depth ≤ m by
the induction hypothesis. Therefore, the set S :=

⋃
y>x im(fy) has depth ≤ m

in U(n). If S is empty, then x is maximal, and we define f(x) to be the unique
maximal point of U(n) that has the same colour as x. Otherwise, S has finitely
many minimal points, s0, . . . , sk, say. Pick points y0, . . . , yk in M such that
si ∈ im(fyi

). If k = 0 and c(y0) = c(x), then we define f(x) := s0. Otherwise,
by Theorem 7, there is a unique point s in U(n) whose immediate successors
are s0, . . . , sk such that c(s) = c(x); we define f(x) := s. It is straightforward to
check that f defined in this manner is the unique p-morphism from M to U(n),
and clearly the image of f has depth ≤ m + 1. 
�
Remark 9. Two points x and x′ in a model M of finite depth are bisimilar if,
and only if, the unique p-morphism f in Proposition 8 sends them to the same
point of U(n).

Definition 10 (De Jongh Formulas). We define formulas ϕw, ψw and θw,
for each w ∈ U(n), by induction on the depth of w. Let w ∈ U(n). Let Iw denote
the (finite) set of immediate successors of w. By recursion, we assume that the
formulas ϕw′ , ψw′ and θw′ have been defined for each w′ ∈ Iw. We define:

θw :=
∨

w′∈Iw

ϕw′ , (5)

ϕw :=
∧

p∈Tw

p ∧
∧

q∈Bw

(q → θw) ∧
∧

w′∈Iw

(ψw′ → θw) , (6)

ψw := ϕw → θw, (7)
6 This fact is well-known, cf. e.g. [6, p. 428]. We briefly recall the proof here. Also cf.,

e.g., [12, Theorem3.2.3], for more details. Note, however, that we do not assume
here that M is finite, only that M has finite depth.



On Duality and Universal Models 105

where Tw is the set of propositional variables p which are true in w, Bw is the
set of propositional variables q such that w is a q-border point.7

Note that the above definition includes the case where w is a maximal point,
i.e., k = 0. Also note that the syntactic shape of our definition of ϕw is slightly
different from the usual definition (e.g. [5, Definition 3.3.1]), but easily seen to be
equivalent using the fact that (

∨m
i=1 αi) → β is equivalent in IPC to

∧m
i=1(αi →

β), for any formulas α1, . . . , αm and β. The following theorem shows which
subsets of the universal model are defined by De Jongh formulas.

Theorem 11. For each w ∈ U(n), we have v(θw) = (↑w) \ {w}, v(ϕw) = ↑w,
and v(ψw) = U(n) \ ↓w.

Proof. By induction on the depth of w, cf., e.g., [5, Theorem 3.3.2]. 
�
Note that the de Jongh formula ψw has the following property: a frame G refutes
ψw iff there is a generated subframe of G p-morphically mapped onto the sub-
frame of U(n) generated by w. In this way, de Jongh formulas correspond to the
so-called Jankov or splitting formulas, see [5, Sect. 3.3] for the details.

3 Separated Points and the Meet-Implication Fragment

In this section we use a duality for Heyting algebras and (∧,→)-homomorphisms
for characterizing n-universal models of the (∧,→)-fragment of IPC (Theo-
rem 27) and for characterizing (∧,→)-definable up-sets of n-universal models
of IPC (Theorem 29). The main technical contribution is the characterization
of the dual model of the (∧,→)-subalgebra of a Heyting algebra generated by
a finite set of generators (Theorem 26). Our proofs rely on discrete duality and
do not use topology. They can be extended to Priestley [13] and Esakia [14]
dualities by adding topology, but we will not use this (explicitly) in this paper.
In the study of the meet-implication fragment, the following notion of ‘separated
point’ in a model will be crucial.8

Definition 12. Let M be a model. A point x ∈ M is separated if, and only if,
there exists a propositional variable q for which x is a q-border point.

The following easy lemma will be used frequently in what follows.

Lemma 13. Let f : M → N be a p-morphism between models. If x is a sepa-
rated point in M , then f(x) is separated in N .

Proof. Let x ∈ M be a separated point. Choose q such that x is a q-border point.
We claim that f(x) is a q-border point in N , and therefore separated. Indeed,
N, f(x) �|= q since f preserves colourings. Also, if y′ > f(x), then since f is a
p-morphism we may pick x′ > x such that f(x′) = y′. Since x′ > x, we have
that M,x′ |= q since x is a q-border point, so q also holds in y = f(x′), since f
preserves colourings. 
�
7 We use the usual convention that

∨ ∅ = ⊥ and
∧ ∅ = �.

8 This notion has it roots in [2]. Our ‘separated’ points are precisely those points which
are ‘not inductive and not full’ in the terminology of [2, Definition 5].
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The following alternative characterization of separated points relates them to
the (∧,→)-fragment.

Lemma 14. Let x be a point in a model M . The following are equivalent:

1. the point x is separated;
2. there exists a (∧,→)-formula ϕ such that x is a ϕ-border point.

Proof. It is clear that (1) implies (2). For (2) implies (1), we prove the contra-
positive. Suppose that x is not separated. We prove the negation of (2), i.e., x
is not a ϕ-border point for any (∧,→)-formula ϕ, by induction on complexity
of ϕ. For ϕ a propositional variable, this is true by assumption. For ϕ = ψ ∧ χ,
note that v(ϕ)c = v(ψ)c ∪ v(χ)c. From this equality, it follows that if x were a
ϕ-border point, it would already be either a ψ-border point or a χ-border point,
which contradicts the induction hypothesis. For ϕ = ψ → χ, suppose that x is a
ϕ-border point. We will prove that x is also a χ-border point, which again con-
tradicts the induction hypothesis. By maximality of x, all y > x satisfy ψ → χ.
However, x does not satisfy ψ → χ, so we must have that x ∈ v(ψ) ∩ v(χ)c.
Since v(ψ) is an up-set, we conclude that, for all y > x, y ∈ v(ψ), and therefore
y ∈ v(χ). Hence, x is a χ-border point, as required. 
�
For a model M , we denote by Ms the submodel consisting of the separated
points of M . That is, the order and colouring on Ms are the restrictions of the
corresponding structures on M . (Note that the model Ms is a submodel, but
almost never a generated submodel, i.e. an up-set, of M !)

Lemma 15. Let M be a model on n variables. The submodel Ms has finite
depth ≤ n.

Proof. Let C be a chain in Ms. For any x, y ∈ Ms, if x < y, then c(x) < c(y),
since x is separated and y > x in M . Therefore, {c(x) | x ∈ C} is a chain in the
poset (2n,≤), so that it must have size ≤ n. Hence, C has size at most n. 
�
Definition 16 (The Model M∧,→). Let M be a model and Ms its submodel
of separated points. Let f : Ms → U(n) be the unique p-morphism which exists
by Lemma 15 and Proposition 8. Define M∧,→ := im(f) to be the generated
submodel of U(n) consisting of those points in the image of f , as in the following
diagram.

(8)

The above definition can in particular be applied to U(n) itself. The following
proposition characterizes the points in the generated submodel U(n)∧,→ of U(n).
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Proposition 17. Let n ≥ 1. The generated submodel U(n)∧,→ consists exactly
of those points x ∈ U(n) such that for all y ≥ x, y is separated.

Proof. Write S := {x ∈ U(n) | for all y ∈ U(n), if y ≥ x, then y is separated}.
Note that S is a generated submodel of U(n), and also of U(n)s. Let f be as
in Definition 16. By definition, U(n)∧,→ = im(f). We show that S = im(f). If
x′ ∈ U(n)s, then f(x′) ∈ S: for any y ∈ U(n) with y ≥ x, there exists y′ ∈ U(n)s

such that f(y′) = y. By Lemma 13, y is separated. For the converse, note that
the restriction, g, of f to the generated submodel S is still a p-morphism, since
S is a generated submodel of U(n)s. Also, the inclusion map i : S → U(n)
is a p-morphism, since S is a generated submodel of U(n). Therefore, by the
uniqueness part of Proposition 8, we must have i = g. Thus, if x is in S, then
x = i(x) = g(x) = f(x). In particular, x is in im(f). 
�
Lemma 18. For any model M , M∧,→ is contained in U(n)∧,→. In particular,
M∧,→ is a generated submodel of U(n) of depth ≤ n, and thereby a finite model.

Proof. Since M∧,→ is the image of a p-morphism, it is a generated submodel,
and all its points are separated, so by Proposition 17, every point of M∧,→ is in
U(n)∧,→. The ‘in particular’-part follows from Lemma 15. 
�
In Theorem 26 below, we will show that, for any model with borders M , the
model M∧,→ is dual to the (∧,→)-subalgebra of A that is generated by the
admissible up-sets v(p1), . . . , v(pn). We need two lemmas, Lemmas 19 and 20.

Lemma 19. Let f : H → K be a function between Heyting algebras with an
upper adjoint g : K → H. Then f preserves binary meets if, and only if, for all
a ∈ H, b ∈ K, the equality a → g(b) = g(f(a) → b) holds. In particular, if f is
surjective and preserves binary meets, then g preserves Heyting implication.

Proof. Let a ∈ H be arbitrary. Consider the following two diagrams.

(9)

A way to express the assertion that f preserves binary meets is that, for all
a ∈ H, the left diagram in (9) commutes. By uniqueness of adjoints, the left
diagram in (9) commutes if, and only if, the right diagram in (9) commutes.

The ‘in particular’-part now follows since, if f is surjective, then b′ = fg(b′)
for any b′ ∈ K (Proposition 1). 
�
Lemma 19 and its proof are very similar to, and were in fact directly inspired
by, the Frobenius condition in [15, Definition p.157] and the remark following it;
we leave further exploration of the precise connection to future research.

The following lemma now provides the key connection between the construc-
tion of Ms and the (∧,→)-fragment.
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Lemma 20. Let M be a model with borders. Consider the following diagram:

(10)

where i is the natural inclusion, v and vs are the valuation maps of M and Ms,
respectively, q is the lattice homomorphism dual to the inclusion Ms ↪→ M , and
r is its upper adjoint. Then r is a (∧,→)-homomorphism, and

r ◦ vs ◦ i = v ◦ i. (11)

Remark 21. Note that, by Proposition 1, the function r sends an up-set V of
Ms to the up-set {x ∈ M | ∀y ≥ x (y ∈ Ms ⇒ y ∈ V )} of M . Therefore, the
equality (11) says precisely that, for any (∧,→)-formula ϕ and x ∈ M , we have

M,x |= ϕ ⇐⇒ ∀y ≥ x (y ∈ Ms ⇒ Ms, y |= ϕ). (12)

In this sense, Lemma 20 is an algebraic rendering of the crucial ingredient to [2,
Proof of Theorem.1]. The proof we give here is different in spirit.

Proof (of Lemma 20). Note that r is ∧-preserving since it is an upper adjoint,
and r is →-preserving by Lemma 19. Therefore, both v ◦ i and r ◦ vs ◦ i are
(∧,→)-homomorphisms. Hence, to prove (11), it suffices to prove that v ◦ i and
r◦vs ◦ i are equal on propositional variables. Let p be any propositional variable.
We have that vi(p) ≤ rqvi(p) = rvsi(p), because r is upper adjoint to q and
vs(p) = qv(p) by definition of vs. On the other hand, suppose that x �∈ vi(p).
Since M is a model with borders, pick y ∈ max(v(p)c) such that y ≥ x. Then
y ∈ Ms, so x �∈ rqvi(p), as required. 
�
Proposition 22. Let M be a model with borders and let Ms and f : Ms →
M∧,→ be as in Definition 16. For any w ∈ Ms and (∧,→)-formula ϕ, we have

M,w |= ϕ ⇐⇒ M∧,→, f(w) |= ϕ. (13)

Proof. Immediate from Definition 16 and the equivalence in (12). 
�
The above considerations in particular allow us to prove the following theorem,
originally due to Diego [1].

Theorem 23 (Diego). For any n, F∧,→(n) embeds as a (∧,→)-subalgebra
into U(U(n)∧,→). In particular, F∧,→(n) is finite and therefore, the variety of
implicative meet-semilattices is locally finite.
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Proof. Let h : F∧,→(n) → U(U(n)∧,→) be the extension of the assignment pi 	→
pi to a (∧,→)-homomorphism. We show that h is injective. Suppose that ϕ �= ψ
in F∧,→(n). By Lemma 6, we have vU(n)(i(ϕ)) �= vU(n)(i(ψ)). By Lemma 20,
applied to U(n), we have vs(i(ϕ)) �= vs(i(ψ)), since r is injective. This means
that there exists x ∈ U(n)s such that U(n)s, x |= ϕ and U(n)s, x �|= ψ. Hence,
since f : U(n)s → U(n) is a p-morphism, we obtain f(x) ∈ h(ϕ) and f(x) �∈
h(ψ), so h(ϕ) �= h(ψ), as required. The ‘in particular’-part now follows, since by
Lemma 18, U(n)∧,→ is finite. 
�
It follows from Theorem 23 that F∧,→(n) is a finite Heyting algebra for each n,
in which the binary supremum is given by

ϕ � ψ =
∧

{χ ∈ F∧,→(n) | ϕ ≤ χ and ψ ≤ χ}, (14)

and the bottom element ⊥ is given by p1 ∧ · · · ∧ pn.

Definition 24. For each intuitionistic formula ϕ, let s(ϕ) denote the formula
obtained from ϕ by replacing each occurrence of a disjunction ∨ by �, and replac-
ing each occurrence of ⊥ by ⊥.

Algebraically, the above definition is the unique Heyting algebra homomorphism
s : FHA(n) → F∧,→(n) extending the assignment pi 	→ pi. This means that if ϕ
is provable in IPC, s(ϕ) is also provable in IPC. In particular, if ϕ implies ψ in
IPC, then s(ϕ → ψ) = s(ϕ) → s(ψ) is also provable in IPC. This means that
s(ϕ) implies s(ψ).

Theorem 25. Every up-set of U(n)∧,→ is definable by a (∧,→)-formula.

Proof. Let U be an up-set of U(n)∧,→. Recall that U(n)∧,→ is a finite generated
submodel of U(n), by Lemma 18. We denote by min(U) the finite set of minimal
points of U . It follows from Theorem 11 that U is defined by the disjunction
ϕU :=

∨
u∈min(U) ϕu of de Jongh formulas. We also have the (∧,→)-formula

s(ϕU ) defined as in Definition 24. To prove the theorem, it therefore suffices to
prove the following claim.

Claim. The up-set of U(n)∧,→ defined by s(ϕU ) is equal to U .

Proof of Claim. By induction on the partial order of inclusion of up-sets of
U(n)∧,→. For the base case, U = ∅, note that min(∅) = ∅, so that s(ϕ∅) =
s(⊥) = p1 ∧ · · · ∧ pn, which indeed defines the empty subset of U(n)∧,→, since
no separated point makes all propositional variables true.

Now suppose that U is a non-empty up-set in U(n)∧,→. The induction
hypothesis is that, for all proper subsets V � U , the formula s(ϕV ) defines V .

We distinguish two cases: (1) U has a one minimal point; (2) U has more
than one minimal point.

(1) Let w be the minimum of U . By the induction hypothesis, for every w′ ∈ Iw,
s(ϕw′) defines ↑w′ in U(n)∧,→. Therefore, the formula s(ψw′) = s(ϕw′) →
s(θw′) defines (↓w′)c in U(n)∧,→. Thus, s(ψw′) and ψw′ define the same
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up-set in U(n)∧,→. Moreover, the induction hypothesis also implies that
s(θw) = s(ϕ↑Iw) defines ↑Iw in U(n)∧,→. Thus, the formulas s(θw) and θw

define the same subset of U(n)∧,→. It follows that a point x ∈ U(n)∧,→
satisfies s(ϕw) if, and only if, x satisfies ϕw. By Theorem 11, the latter holds
if, and only if, x ≥ w. Thus, s(ϕw) defines ↑w = U .

(2) Note first that, if u ∈ U , then u ≥ w for some w ∈ min(U). Therefore,
u |= s(ϕw), using case (1). Since ϕw implies ϕU in IPC, we have that s(ϕw)
implies s(ϕU ). Hence, u |= s(ϕU ). It remains to show that there is no border
point u of U which satisfies s(ϕU ). Let u be a border point of U . We write
B for the up-set ↑Iu, which is a subset of U since u is a border point of U .
We will distinguish two sub-cases: (a) B = U , and (b) B � U .

(a) B = U . Then, in particular, Iu = min(B) = min(U). Since u is separated,
choose a propositional variable q so that u is a q-border point. Then every
point w ∈ min(U) = Iu satisfies q, so ϕU implies q in IPC, so s(ϕU ) implies
s(q) = q in IPC. Since u does not satisfy q, u also does not satisfy s(ϕU ).

(b) B � U . Applying the induction hypothesis to B, we see that s(ϕB) =∨
u′∈Iu

s(ϕu′) defines B. It follows from this that u does not satisfy s(ψu),
since u certainly satisfies s(ϕu), using the induction hypothesis again. An
easy application of Theorem 11 shows that, for every w ∈ min(U), ϕw implies
ψu in IPC, since w � u. Hence, s(ϕw) implies s(ψu), for every w ∈ Iu.
Therefore, s(ϕU ) implies s(ψu). However, u does not satisfy s(ψu), so u does
not satisfy s(ϕU ). 
�

Let M be a model with borders. In diagram (15) below we show how the valua-
tion of formulas in the models M and Ms, as in diagram (10), is related to the
unique map f : Ms → U(n) that was used in the diagram (8).

(15)

In the above diagram, the left part of the diagram is defined as in (10), vU(n)

denotes the natural valuation on U(n), and the triangle f∗ = h ◦ t is the dual of
the triangle in (8).

Theorem 26. Let M be a model with borders. Denote by B be the (∧,→)-
subalgebra of U(M) that is generated by v(p1), . . . , v(pn). Then B is equal to
the image of the composite rh. In particular, B is isomorphic to the implicative
meet-semilattice U(M∧,→).

Proof. Chasing the diagram (15), we have:

vi = rvsi = rf∗vU(n)i = rhtvU(n)i, (16)
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where we use Lemma 20 and the fact that vs = f∗vU(n), since f is a p-morphism
of models. Note that B = im(vi), so we need to show that im(rh) = im(vi). For
the inclusion “⊆”, let U ∈ U(M∧,→), and V := rh(U); we prove that V ∈ im(vi).
Since U is an up-set in U(n)∧,→ by Lemma 18, Theorem 25 implies that there
is a (∧,→)-formula ϕ such that vU(n)i(ϕ) ∩ U(n)∧,→ = U . Therefore, since
U ⊆ M∧,→, we have tvU(n)i(ϕ) = vU(n)i(ϕ) ∩ M∧,→ = U . Thus, V = rh(U) =
rhtvU(n)i(ϕ) = vi(ϕ), using (16), so V ∈ im(vi).

For the inclusion “⊇”, note first that im(rh) contains v(p1), . . . , v(pn). It thus
remains to show that im(rh) is a (∧,→)-subalgebra of U(M), or equivalently,
that rh preserves ∧ and →. Since r is an upper adjoint and h is sa Heyting
homomorphism, rh preserves ∧. Moreover, using Lemma 19 and the fact that
qr = id, we have, for any U, V ∈ U(M∧,→), that

rh(U) → rh(V ) = r(qrh(U) → h(V )) = r(h(U) → h(V )) = rh(U → V ),

where the last step uses that h is a Heyting homomorphism. 
�
We now use this theorem to prove three facts about the (∧,→)-fragment of IPC.
The first is a strong form of Diego’s theorem.

Corollary 27. For any n, F∧,→(n) ∼= U(U(n)∧,→).

Proof. Apply Theorem 26 to the model U(n). Using Lemma 6, the map vU(n)i :
F∧,→(n) → U(U(n)) is injective, so F∧,→(n) is isomorphic to the image of vU(n)i.
The image of vU(n)i is the subalgebra generated by v(p1), . . . , v(pn), which, by
Theorem 26 is isomorphic to U(U(n))∧,→. 
�
Theorem 28. For any ϕ ∈ FHA(n) and any model M and x ∈ Ms, we have:

Ms, x |= ϕ ⇐⇒ Ms, x |= s(ϕ).

Proof. Recall that s is the unique Heyting homomorphism FHA(n) → F∧,→(n)
such that s(p) = p for all propositional variables p. Note that si is the iden-
tity on F∧,→(n), so s is surjective. Also note that tvU(n)i is surjective, as we
showed in the proof of the inclusion “⊆” of Theorem 26. We conclude that
tvU(n)is is a surjective (∧,→)-preserving map, and therefore it is a Heyting
homomorphism by Lemma 2. Now, htvU(n)is is also a Heyting homomorphism
and htvU(n)is(p) = htvU(n)(p) = vs(p). By uniqueness of the map vs, we con-
clude that htvU(n)is = vs. Thus, for any x ∈ Ms, we have

x ∈ vs(ϕ) ⇐⇒ x ∈ htvU(n)is(ϕ) ⇐⇒ x ∈ f∗vU(n)is(ϕ) ⇐⇒ x ∈ vsis(ϕ),

as required. 
�
Theorem 29. Let M be a model with borders. Let U ⊆ M be an up-set. The
following are equivalent:

1. There exists a (∧,→)-formula ϕ such that v(ϕ) = U ;
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2. For all x ∈ M , if, for all z ∈ Ms such that z ≥ x, there exists y ∈ U ∩ Ms

bisimilar to z in Ms, then x ∈ U ;
3. For all x ∈ M ,

(a) if all separated points above x are in U , then x ∈ U , and
(b) if x ∈ Ms and there exists x′ ∈ U ∩ Ms which is bisimilar to x in Ms,

then x ∈ U .

Proof. By Theorem 26(1), the up-sets which are definable by a (∧,→)-formula
are precisely the up-sets in the image of rh. Let h� denote the lower adjoint
of h, which is given explicitly by sending S ∈ U(Ms) to f(S) ∈ U(M∧,→). By
Proposition 1(1), applied to the adjunction h�q � rh, an up-set U is in im(rh)
if, and only if, rhh�q(U) ⊆ U . Writing out the definitions of r, h, h� and q, we
see that this condition is equivalent to:

∀x ∈ M, if
(∀z ∈ Ms if z ≥ x then z ∈ f−1(f(U ∩ Ms))

)
then x ∈ U.

This condition is in turn equivalent to (2), using Remark 9. If (2) holds, then
(3a) is clear. For (3b), suppose x is separated and there exists x′ ∈ U ∩Ms which
is bisimilar to x in Ms. By bisimilarity, for any z ∈ Ms with z ≥ x, there exists
y ∈ Ms with y ≥ x′ and y bisimilar to z in Ms. Moreover, since U is an up-set
containing x′, we have y ∈ U . Using (2), we conclude that x ∈ U . Now assume
(3) and let x ∈ M be a point such that for all z ∈ Ms with z ≥ x, there exists
y ∈ U ∩ Ms bisimilar to z in Ms. If z is any separated point above x, then it
follows from applying (3b) to z that z ∈ U . Therefore, by (3a), x ∈ U . 
�

4 Subframe Formulas and Uniform Interpolation

In this section we will apply the results obtained in the previous section to show
that (∧,→)-versions of de Jongh formulas correspond to subframe formulas in
just the same way as de Jongh formulas correspond to Jankov formulas (The-
orem 31). We will also use the characterization of (∧,→)-definable up-sets of
U(n) to prove that uniform interpolants in the (∧,→)-fragment of IPC are not
always given by the IPC-uniform interpolants (Example 34).
We need an auxiliary lemma before proving the main theorem of this section.

Lemma 30. For each finite rooted frame F , there exist n ∈ ω and a colouring
c : F → 2n such that M = (F, c) is isomorphic to a generated submodel of
U(n)∧,→.

Proof. Let n := |F | and enumerate the points of F as x1, . . . , xn. Define c(xi)j ,
the jth coordinate of the colour of the point xi, to be 1 if xi ≥ xj , and 0
otherwise. All points in M = (F, c) have distinct colours, and are in particular
separated, so M = Ms. Let f be the unique p-morphism from M = Ms to U(n)
from Proposition 8, its image is M∧,→. Recall from Lemma 18 that M∧,→ is a
submodel of U(n)s. Let g be the unique p-morphism from U(n)s onto U(n)∧,→.
Since the composite gf : M → U(n)∧,→ preserves colours, it is injective, and it
is therefore an isomorphism onto a generated submodel of U(n)∧,→. 
�
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Theorem 31. Let F be a finite rooted frame and let M = (F, c) be the model on
F defined in the proof of Lemma 30. There exists a (∧,→)-formula β(F ) such
that for any descriptive model N we have

N �|= β(F ) ⇐⇒ M is a p-morphic image of Ns.

Proof. By Lemma 30, M is isomorphic to a generated submodel of U(n)∧,→.
Without loss of generality, we will assume in the rest of this proof that M actually
is a generated submodel of U(n)∧,→. Since the model M is rooted, there exists
w ∈ U(n)∧,→ such that M = ↑w. We define β(F ) := s(ψw) = s(ϕw) → s(θw)
and prove that β(F ) satisfies the required property.

First note that, as follows from the proof of Theorem 25, s(ϕw) defines the
up-set of U(n)∧,→ generated by w and s(θw) defines the up-set of U(n)∧,→
generated by the set of proper successors of w. Therefore, w is the only point of
U(n)∧,→ that satisfies s(ϕw) and refutes s(θw).

Let v ∈ N be such that N, v �|= β(F ). Since N is descriptive, we can find
a successor u of v such that N,u |= s(ϕw), N,u �|= s(θw) and every proper
successor of u satisfies s(θw) (see, e.g., [5, Theorem 2.3.24]). By Lemma 14, this
implies that u ∈ Ns. Let f : Ns → U(n)∧,→ be the unique p-morphism as in
Proposition 8. Because u ∈ Ns, s(ϕw) is a (∧,→)-formula and N,u |= s(ϕw),
Proposition 22 entails that U(n)∧,→, f(u) |= s(ϕw). By the same argument we
also have that U(n)∧,→, f(u) �|= s(θw). Thus, we obtain that U(n)∧,→, f(u) |=
s(ϕw) and U(n)∧,→, f(u) �|= s(θw). We have shown in the previous paragraph
that this implies f(u) = w. Therefore, as f is a p-morphism, we obtain that F
is a p-morphic image of Ns.

For the other direction, let f : Ns → M be a surjective p-morphism. Since f
is surjective, pick u ∈ Ns such that f(u) = w. As w satisfies s(ϕw) and refutes
s(θw), and both are (∧,→)-formulas, the same argument as above gives that
N,u |= s(ϕw) and N,u �|= s(θw). Hence, N �|= β(F ). 
�
The formula β(F ) defined in Theorem 31 is called the subframe formula of F .

Recall that, for any formula ϕ in n variables, we say a Heyting algebra A
validates the equation ϕ ≈ 1, notation A |= ϕ ≈ 1, if v(ϕ) = 1 under each assign-
ment v : {p1, . . . , pn} → A. If there is an assignment v under which v(ϕ) �= 1,
we say that A refutes the equation ϕ ≈ 1.

Corollary 32. Let F be a finite rooted frame and A its Heyting algebra of up-
sets. Then for each Heyting algebra B we have

B �|= β(F ) ≈ 1 ⇐⇒ there is a (∧,→)-embedding A ↪→ B

Proof. It follows from the proof of Theorem 31 that the model (F, c) refutes
β(F ). This means that, in the Heyting algebra A = U(F ), the formula β(F )
does not evaluate to 1 under the assignment v : pi 	→ c∗(pi). Suppose that there
is a (∧,→)-embedding i : A ↪→ B. Since β(F ) is a (∧,→)-formula, under the
assignment i ◦ v, the formula β(F ) does not evaluate to 1 in B. Conversely,
suppose that B �|= β(F ) ≈ 1, under an assignment v. Let G be the descriptive
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Fig. 1. The 1-universal model, U(1), also known as the Rieger-Nishimura ladder, with
U(1)s = {x1, x2} and U = v(¬¬p).

frame with B as its algebra of admissible up-sets. The assignment v yields an
admissible colouring c′ on G with the property that N = (G, c′) �|= β(F ). By
Theorem 31, this implies in particular that F is a p-morphic image of Ns. It
now follows from Theorem 26 that A is (∧,→)-embedded into B. 
�
Remark 33. Subframe formulas axiomatize a large class of logics having the finite
model property [6, Chap. 11]. The frames of these logics are closed under taking
subframes. Alternatively varieties of Heyting algebras corresponding to these
logics are closed under (∧,→)-subalgebras. There exist many different ways to
define subframe formulas for intuionistic logic: model-theoretic [6, Chap. 11],
algebraic [8,16], and via the so-called NNIL formulas [17]. Theorem 31 gives
a new way to define subframe formulas. The proof of this theorem shows that
the same way de Jongh formulas for intuitionistic logic correspond to Jankov
formulas [5], de Jongh formulas for the (∧,→)-fragment of intuitionistic logic
correspond to subframe formulas. This provides a different perspective on the
interaction of de Jongh-type formulas and frame-based formulas such as Jankov
formulas, subframe formulas etc.

We finish this section by applying the results of this paper to show that the
uniform IPC-interpolant, as defined by Pitts [18], of a meet-implication formula
is not necessarily equivalent to a meet-implication formula.

Example 34. As can be readily checked, the uniform interpolant of the formula
p → (q → p) in IPC with respect to the variable p is the formula ¬¬p. We will
use the characterization in Theorem 29 to prove that ¬¬p is not equivalent to a
(∧,→)-formula. Namely, if there were a (∧,→)-formula ϕ equivalent to ¬¬p, then
in particular the up-set U defined by the formula ¬¬p in the 1-universal model
of IPC (see Fig. 1 below) would be (∧,→)-definable. It thus suffices to show that
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U is not (∧,→)-definable. To see this, note that U(1)s = max v(p)c = {x1, x2},
and these two points are bisimilar in U(1)s. Since x2 ∈ U but x1 �∈ U , U does
not satisfy (3b) in Theorem 29, and is therefore not (∧,→)-definable.

We now also prove that the least (∧,→)-definable up-set of U(1) containing U
is U(1) itself. Indeed, let W be a (∧,→)-definable up-set which contains U . Then,
by the above, x1 belongs to W . It then easily follows from (3a) in Theorem 29
that every colour 0 point of U(1) must also belong to W . Thus, W = U(1).
This argument shows, via semantics, that the (∧,→)-formula which is a uniform
interpolant of p → (q → p) is �. We refer to [19] for more details on uniform
interpolation in fragments of intuitionistic logic. 
�

5 Conclusions and Future Work

In this paper we studied the (∧,→)-fragment of intuitionistic logic via methods of
duality theory. We gave an alternative proof of Diego’s theorem and characterized
(∧,→)-definable up-sets of the n-universal model of intuitionistic logic, using
duality as our main tool. Interestingly, we were able to directly use finite duality
for distributive lattices and adjunction properties such as the Frobenius property
(Lemma 19), without resorting to any of the existing dualities for implicative
meet-semilattices. We expect that the techniques developed in Sect. 3 could be
extended to the infinite setting in order to give a unified account of the different
dualities that exist in the literature for implicative meet-semilattices, e.g., [3,7]
and [8]. We leave this as an interesting question for future work.

The characterization of (∧,→)-definable up-sets that we gave in Theorem 29
can be considered as a first step towards solving the complicated problem of
characterizing all IPC-definable up-sets of n-universal models. This problem is
linked to the following interesting question. In [20] free Heyting algebras are
described from free distributive lattices via step-by-step approximations of the
operation →. In [21], the authors explained how the construction in [20] can
be understood via (finite) duality for distributive lattices. This begs the ques-
tion whether one can use duality for implicative meet-semilattices to build free
Heyting algebras, starting from free implicative meet-semilattices and approxi-
mating the operation of disjunction, ∨, step-by-step. The results of this paper
can be considered as the first (or actually zeroth) step of such a step-by-step
construction.

Finally, we note that [22] and [23] study n-universal models in other fragments
of intuitionistic logic. We leave it to future work to investigate how the duality
methods of this paper relate to the methods developed in [22] and [23].
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Abstract. By Gentzen’s famous Hauptsatz (the cut-elimination theo-
rem) every proof in sequent calculus for first-order logic with cuts can be
transformed into a cut-free proof; cut-free proofs are analytic and consist
entirely of syntactic material of the end-sequent (the proven theorem).
But in systems with induction rules, cut-elimination is either impossi-
ble or does not produce proofs with the subformula property. One way
to overcome this problem is to formulate induction proofs as infinite
sequences of proofs in a uniform way and to develop a method, which
yields a uniform description of the corresponding cut-free proofs. We
present such a formalism, as an alternative to systems with induction
rules, and define a corresponding cut-elimination method (based on the
CERES-method for first-order logic). The basic tools of proof theory,
such as sequent- and resolution calculi are enriched with inductive def-
initions and schemata of terms, formulas, proofs, etc. We define a class
of inductive proofs which can be transformed into this formalism and
subjected to schematic cut-elimination.

1 Introduction

Cut-elimination was originally introduced by G. Gentzen as a theoretical tool from
which results like decidability and consistency could be proven. Cut-free proofs
are computationally explicit objects from which interesting information such as
Herbrand disjunctions and interpolants can be easily extracted. When viewing
formal proofs as a model for mathematical proofs, cut-elimination corresponds to
the removal of lemmas, which leads to interesting applications (see, e.g. [4,5]).

For such applications to mathematical proofs, the cut-elimination method
ceres (cut-elimination by resolution) was developed in [6]. It essentially reduces
cut-elimination for a proof π to a theorem proving problem: the refutation of
the characteristic clause set CL(π). Given a resolution refutation ρ of CL(π), an
essentially cut-free proof can be constructed by a proof-theoretic transformation.
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It is well-known that cut-elimination in a standard calculus of arithmetic with
an induction rule is impossible in general [18]. In the inductive calculi defined in
[9,14,15] cut-elimination works but does not produce analytic proofs, i.e. proofs
with the subformula property. The aim of this paper is the development of a sche-
matic calculus (representing a class of inductive proofs) admitting cut-elimination
providing analytic proofs. Instead of proving a sequent S : Γ � ∀x.A(x) with induc-
tion we consider the infinite sequence Sn : Γ � A(n) and proofs ϕn of Sn. Each of
these proofs ϕn is an ordinary LK-proof and enjoys cut-elimination resulting in an
analytic proof. One could hope that, with a sufficiently nice finite description of
the infinite sequence ϕn, a finite description of a sequence of corresponding cut-free
proofs comes within reach. The subject of this paper is to find appropriate finite
representations of such proof sequences and to develop a formalism to represent
sequences of corresponding cut-free proofs as well as the induced Herbrand dis-
junctions. It turned out that, to this aim, the method ceres is more suitable than
the traditional reductive method: in [5] Fürstenberg’s proof of the infinitude of
primes was formalized as a proof schema and then analyzed by the ceres method.
It turned out that the schema of resolution refutations of (the schemata of) the
characteristic clause sets defines a substitution schema representing Euclid’s con-
struction of primes. In fact, the schema of characteristic clause sets (which is much
more compact and shorter than the proof schema itself) encodes the main informa-
tion provided by cut-elimination – the instantiations of quantifiers; this informa-
tion is revealed by the resolution refutations. The analysis of Fürstenberg’s proof
was mainly performed purely mathematically (i.e. on the meta level) and the reso-
lution schema was defined and proven correct by hand. Therefore a higher degree of
mechanization appears desirable. As a full automation of ceres in proof schemata
is unrealistic we concentrate on subclasses of schemata (representing specific types
of inductive proofs) and develop formalisms which serve as tools for partial mech-
anization of cut-elimination in schemata and as a basis for proving formally the
correctness of the result.

Because of lack of space, many proofs are just sketches; for full details we
refer to [12,16].

1.1 Related Work

In [15] a reductive cut-elimination method was given for intuitionistic proof sys-
tems with induction. Although the language they consider is first-order, they
allow higher-order quantification on terms (but not on predicates). We do not
allow quantification over schematic variables, but just on instances of them
(which are variables of type ι).

Another approach is to avoid the explicit use of an induction rule by so-called
cyclic proofs. In [8] a cyclic proof system is presented and it is shown that this
system subsumes the use of the induction rule. The problem of cut-elimination
for cyclic proofs is still open [9].

In this paper we define a proof system similar to the cyclic proofs of [8].
There are some major differences between the two systems: instead of using a
trace condition and a notion of companion node, we will have a notion of proof
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link with associated primitive recursive proof definitions. In cyclic proofs, only
predicate symbols are divided into ordinary and inductive sets, i.e. no inductively
defined terms are allowed. Finally, cyclic proofs subsume full induction, while
in our system we can have only simple inductions. Every proof from our system
can be transformed into a proof from the system given in [8].

2 Notations and Definitions

We work in a two-sorted setting with the sort ω, intended to represent the
natural numbers, and the sort ι, intended to represent an arbitrary first-order
domain. Our language consists of countable sets of variables of both sorts, and
sorted n-ary function and predicate symbols, i.e. we associate with every n-ary
function f a tuple of sorts (τ1, . . . , τn, τ) with the intended interpretation f : τ1×
· · · × τn → τ , and analogously for predicate symbols.

Terms are built from variables and function symbols in the usual inductive
fashion. We assume the constant function symbols 0 : ω and s : ω → ω (zero and
successor) to be present (if t : ω we will often write t+1 instead of s(t)). By V(t)
we denote the set of variables of a term t.

Formulas are built inductively from atoms using the logical connectives ¬,
∧, ∨, ⇒, ∀ and ∃ as usual. A variable occurrence in a formula is called bound if
it is in the scope of ∀ or ∃ connectives, otherwise it is called free. The notions
of interpretation, satisfiability and validity of formulas are defined in the usual
classical sense.

Sequents are expressions of the form Γ � Δ, where Γ and Δ are multisets of
formulas. Sequents containing only atomic formulas are called clauses. We define
some simple operations on sequents: let S : Γ � Δ and S′ : Π � Λ be sequents;
we define S ◦ S′ (the merge of S and S′) as Γ,Π � Δ,Λ. Let S and S ′ be sets of
sequents then S × S ′ = {S ◦ S′ | S ∈ S, S′ ∈ S ′}.

Let E be a finite set of equations. We consider an extension of the sequent
calculus LK (defined as usual) by an equality rule E , which makes the notation
of mathematical proofs more ractical, and by the induction rule ind:

S[t] E
S[t′]

Γ � Δ,A(0) A(k),Π � Λ,A(s(k))
ind

Γ,Π � Δ,Λ,A(t)

For the E rule, we require that E |= t = t′, and for ind, k is a variable of
sort ω, not occurring in Γ,Π,Δ,Λ and t is a term of sort ω. We denote this
calculus by LKIE. Note that, without restrictions on the E rule, its applicability
is undecidable in general. However, in our paper, the equational theories consist
of equations which can be oriented to terminating and confluent rewrite systems
and thus are decidable. The system LKIE \ {ind} is denoted by LKE.

A proof is a tree where the nodes are labeled by sequent occurrences and
edges are labeled by rules in the usual way. A proof of S is a proof with root
node S. Let A be a set of sequents; a proof ϕ of S from A is a proof of S where
all leaves of ϕ belong to A. If not stated otherwise A is defined as the set of
sequents of the form A � A for atomic formulas A over the underlying syntax.
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A proof ϕ is called cut-free if the cut rule does not occur in ϕ. ϕ is called an
atomic cut normal form if all cuts are on atomic formulas only. Finally, proofs
are endowed with an ancestor relation on occurrences of formulas in a natural
way (for a precise definition see [6]).

2.1 A Motivating Example

Now we turn our attention to the issue of cut-elimination in the presence of
induction. Let us consider the equational theory E = {fI(0, x) = x, fI(s(n), x) =
f(fI(n, x))} and the sequent S:

∀x(P (x) ⇒ P (f(x))) � ∀n((P (fI(n, c)) ⇒ P (g(n, c))) ⇒ (P (c) ⇒ P (g(n, c))))

Obviously, S is not valid in pure first-order logic (under the theory E) and thus
cannot be proven without induction. That means that there exists no proof of S
in LKE. In fact we need the following inductive lemma: ∀x(P (x) ⇒ P (f(x))) �
∀n∀x(P (x) ⇒ P (fI(n, x))).

A proof ψ of this inductive lemma in LKIE could be:

P (fI(0, u)) � P (fI(0, u))
E

P (u) � P (fI(0, u)) ⇒r� P (u) ⇒ P (fI(0, u)) ∀r� ∀x(P (x) ⇒ P (fI(0, x)))

∖̃
ψr

/

Γ, ∀x(P (x) ⇒ P (fI(α, x))) � ∀x(P (x) ⇒ P (fI(s(α), x)))
ind∀x(P (x) ⇒ P (f(x))) � ∀x(P (x) ⇒ P (fI(γ, x))) ∀r∀x(P (x) ⇒ P (f(x))) � ∀n∀x(P (x) ⇒ P (fI(n, x)))

where Γ = ∀x(P (x) ⇒ P (f(x))) and ψr is a simple cut-free first-order proof.
Now we can define a proof ϕ of the sequent S

∖̃
ψ
/

∀x(P (x) ⇒ P (f(x))) � C

∖̃
ϕr

/

C � ∀n((P (fI(n, c)) ⇒ P (g(n, c))) ⇒ (P (c) ⇒ P (g(n, c))))
cut∀x(P (x) ⇒ P (f(x))) � ∀n((P (fI(n, c)) ⇒ P (g(n, c))) ⇒ (P (c) ⇒ P (g(n, c))))

where C denotes ∀n∀x(P (x) ⇒ P (fI(n, x))) and ϕr is a simple cut-free first-
order proof.

In the attempt of performing reductive cut-elimination a la Gentzen, we
locate the place in the proof, where ∀n is introduced. In ϕr, ∀n∀x(P (x) ⇒
P (fI(n, x))) is obtained from ∀x(P (x) ⇒ P (fI(β, x))) by ∀l (where β is an
eigenvariable introduced by ∀r). In the proof ψ we may delete the ∀r inference
yielding the cut-formula and replace γ by β. But in the attempt to eliminate
∀x(P (x) ⇒ P (fI(β, x))) in ψ we get stuck, as we cannot “cross” the ind rule.
Neither can the indrule be eliminated as β is variable. In fact, if we had instead
∀x(P (x) ⇒ P (fI(t, x))) for a closed term t over {0, s,+, ∗} we could prove
� t = n̄ from the axioms of Peano arithmetic and also

∀x(P (x) ⇒ P (f(x))) � ∀x(P (x) ⇒ P (fI(n̄, x)))

without induction (by iterated cuts) and cut-elimination would proceed.
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This problem, however, is neither rooted in the specific form of ψ nor the ind
rule. In fact, there exists no cut-free proof of S in LKIE. In fact, by the subformula
property, the conclusion of the induction rule must be the sequent

∀x(P (x) ⇒ P (f(x)) � (P (fI(α, c)) ⇒ P (g(α, c))) ⇒ (P (c) ⇒ P (g(α, c)))

for some variable α. But this is impossible, as the corresponding induction step
(the right premise of the induction rule) would be the sequent

∀x(P (x) ⇒ P (f(x)), (P (fI(β, c)) ⇒ P (g(β, c))) ⇒ (P (c) ⇒ P (g(β, c)))
�
(P (fI(s(β), c)) ⇒ P (g(s(β), c))) ⇒ (P (c) ⇒ P (g(s(β), c)))

which is not valid and thus not derivable in LKE. In order to prove the end-
sequent an inductive lemma is needed; something which implies ∀n∀x(P (x) ⇒
P (fI(n, x))) and cannot be eliminated.

While there are no cut-free proofs of S in LKIE, the sequents Sn:

∀x(P (x) ⇒ P (f(x))) � ((P (fI(n̄, c)) ⇒ P (g(n̄, c))) ⇒ (P (c) ⇒ P (g(n̄, c))))

do have such proofs in LKE for all numerals n̄; indeed, they can be proven without
induction. But instead of a unique proof ϕ of S we get an infinite sequence of
proofs ϕn of Sn, which have cut-free versions ϕ′

n. This kind of “infinitary” cut-
elimination only makes sense if there exists a uniform representation of the
sequence of proofs ϕ′

n. In the next sections we develop a formalism that has the
potential of producing such a uniform representation, thus paving the way for
cut-elimination in the presence of induction.

3 Schematic Language

In order to give a systematic treatment of cut-elimination in the presence of
induction along the lines of the previous section, we start by defining a schematic
first-order language, an extension of the language described in [1,2] to first-order
logic. This formal language will allow us to specify an (infinite) set of first-order
formulas by a finite term. Towards this, we assume that our function symbols
are partitioned into constant function symbols and defined function symbols. The
first set will contain the usual uninterpreted function symbols and the second
will allow primitive recursively defined functions in the language. Additionally
we introduce schematic variable symbols of type ω → ι and build schematic
variables from schematic variable symbols and terms of type ω, which will be
used to describe infinite sequences of distinct variables. By · we denote sequences
of terms of appropriate type.

For every defined function symbol f , we assume that its type is ω×τ1 ×· · ·×
τn → τ (with n ≥ 0), and we assume given two rewrite rules

f(0, x) → t0 and f(s(y), x) → t[f(y, x)]
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where t[·] is a context, V(t0) ⊆ {x1, . . . , xn}, V(t[f(y, x)]) ⊆ {y, x1, . . . , xn}, and
t0, t are terms not containing f ; if a defined function symbol g occurs in t0 or t
then g ≺ f . We assume that these rewrite rules are primitive recursive, i.e. that
≺ is irreflexive. To denote that an expression t rewrites to an expression t′ (in
arbitrarily many steps), we write t � t′. It is obvious that, in our term language,
the primitive recursive functions can be expressed.

Theorem 3.1. The unification problem of terms is undecidable.

Proof. Immediate since multiplication can be represented in our settings. For
the details see [12,16,17]. ��
Analogously to function symbols, we assume that the predicate symbols are par-
titioned into constant predicate symbols and defined predicate symbols, assuming
as above, rewrite rules and an irreflexive order ≺ for the latter, to build formula
schemata. In our setting, it is important to clarify how to interpret multiple
occurrences of the same bound variable. For an occurrence of a bound variable
x, we consider the lowermost (in the bottom-growing formula-tree) quantifier
that binds x to be associated to that occurrence.

Proposition 3.1. Let A be a formula. Then every rewrite sequence starting at
A terminates, and A has a unique normal form.

Proof. Trivial, since all definitions are primitive recursive. ��

4 Schematic Proofs

Towards defining a notion of proof schema, we need to introduce some notations:
Let S(x) be a sequent with the vector of free variables x, then by S(t) we denote
S(x) where x is replaced by t respectively, where t is a vector terms of appropriate
type. We assume a countably infinite set of proof symbols denoted by ϕ,ψ, ϕi,

ψj . If ϕ is a proof symbol and S(x) a sequent, then the expression
ϕ(t)

S(t)
is called

a proof link. For a variable k : ω, proof links such that V(a1) ⊆ {k} are called
k-proof links.

Definition 4.1. The sequent calculus LKS consists of the rules of LKE, where
proof links may appear at the leaves of a proof, and where E is the set of rewrite
rules (interpreted as equations) for the defined function and predicate symbols.

Note that LK-proofs are also LKS-proofs and we call them normal LKS-proofs.

Definition 4.2 (Proof Schemata). Let ψ be a proof symbol and S(n, x) be a
sequent such that n : ω. Then a proof schema pair for ψ is a pair of LKS-proofs
(π, ν(k)) with end-sequents S(0, x) and S(k + 1, x) respectively, such that π may

not contain proof links and ν(k) may contain only proof links of the form
ψ(k, t)

S(k, t)
and we say that it is a proof link to ψ. We call S(n, x) the end-sequent of ψ,
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and assume an identification between formula occurrences in the end-sequents of
π and ν(k) so that we can speak of occurrences in the end-sequent of ψ.

Finally, a proof schema Ψ is a tuple of proof schema pairs for ψ1, . . . , ψα,
written as 〈ψ1, . . . , ψα〉, such that the LKS-proofs for ψβ may also contain
k-proof links to ψγ for 1 ≤ β < γ ≤ α. We also say that the end-sequent of
ψ1 is the end-sequent of Ψ .

According to the definition above, proof schemata naturally represent infinite
sequences of (first-order) proofs. Towards stating this fact formally as a sound-
ness result we need a notion of evaluation of proof schemata.

Definition 4.3 (Evaluation of Proof Schemata). Let Ψ be a proof schema.
We define the rewrite rules for proof links in Ψ

ψ(0, x)
S(0, x)

→ π and
ψ(k + 1, x)
S(k + 1, x)

→ ν(k)

for all proof schema pairs (π, ν(k)) for ψ. Now for γ ∈ N we define ψ ↓γ as

a normal form of
ψ(γ, x)

S(γ, x)
under the rewrite system just given extended by the

rewrite rules for defined function and predicate symbols. Further, we define Ψ ↓γ=
ψ1 ↓γ .

Proposition 4.1 (Soundness of Proof Schemata). Let Ψ be a proof schema
with end-sequent S(n, x), and let γ ∈ N. Then there exists an LK-proof of
S(γ, x)↓.
Proof. By induction on γ, using Definition 4.3 it is easy to see that the proposi-
tion holds for a proof schema containing only one proof symbol. Then the result
follows by induction on the number of proof symbols in Ψ . ��
Corollary 4.1. The sequent calculus LKS is sound.

Let π be an LKIE-proof. If all induction rules in π are of the following form:

Γ � Δ, A(0) A(k), Π � Λ, A(k + 1)
ind

Γ, Π � Δ, Λ, A(t)

where k : ω and V(t) ⊆ {k}, then π is called k-simple.

Proposition 4.2. Let π be a k-simple LKIE-proof of a sequent S. Then there
exists a proof schema with end-sequent S.

Proof. Inductively introduce for each ind rule in π a new proof symbol and
replace the ind rule with the corresponding proof link. Then extract a proof
schema pair (πβ , νβ(k)) out of ind, taking its left premise as πβ ; νβ(k) is con-
structed via cut on the corresponding proof link and on the right premise of the
ind rule. If necessary add weakening and contraction rules at the end of πβ and
νβ(k) respectively to match the end-sequent. ��
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Example 4.1. The proof ψ of the inductive lemma given in Sect. 2.1 is k-simple,
thus it can be transformed to a proof schema pair of the sequent Sψ(n) =
∀x(P (x) ⇒ P (f(x))) � ∀x(P (x) ⇒ P (fI(n, x))). For the defined function sym-
bol fI , we assume as rewrite rules (oriented versions of) the equalities given in
Sect. 2.1. Then we define a proof schema pair ψ = (π1, ν1(k)); π1 is:

P (fI(0, u(0))) � P (fI(0, u(0))) E
P (u(0)) � P (fI(0, u(0))) ⇒r� P (u(0)) ⇒ P (fI(0, u(0))) ∀r� ∀x(P (x) ⇒ P (fI(0, x)))

wl∀x(P (x) ⇒ P (f(x))) � ∀x(P (x) ⇒ P (fI(0, x)))

where u is a schematic variable (hence u(0) can be regarded as an eigenvariable);
ν1(k) is:

ψ(k)

∀x(P (x) ⇒ P (f(x))) � ∀x(P (x) ⇒ P (fI(k, x)))
∖̃
(1)
/

cut, cl∀x(P (x) ⇒ P (f(x))) � ∀x(P (x) ⇒ P (fI(s(k), x)))

where (1) is (letting Q[z] be P (fI(z, u(s(k)))))

P (u(s(k))) � P (u(s(k)))

Q[k] � Q[k]

Q[s(k)] � Q[s(k)] E
P (f(fI(k, u(s(k))))) � Q[s(k)] ⇒l

Q[k] ⇒ P (f(fI(k, u(s(k))))), Q[k] � Q[s(k)] ∀l∀x(P (x) ⇒ P (f(x))), Q[k] � Q[s(k)] ⇒l
P (u(s(k))), ∀x(P (x) ⇒ P (f(x))), P (u(s(k))) ⇒ Q[k] � Q[s(k)] ⇒r∀x(P (x) ⇒ P (f(x))), P (u(s(k))) ⇒ Q[k] � P (u(s(k))) ⇒ Q[s(k)] ∀l∀x(P (x) ⇒ P (f(x))), ∀x(P (x) ⇒ P (fI(k, x))) � P (u(s(k))) ⇒ Q[s(k)]) ∀r∀x(P (x) ⇒ P (f(x))), ∀x(P (x) ⇒ P (fI(k, x))) � ∀x(P (x) ⇒ P (fI(s(k), x)))

Now, we can define a proof schema Ψ = 〈ϕ,ψ〉 of P (c),∀x(P (x) ⇒ P (f(x))) �
P (fI(n, c)), where ϕ is associated with the pair (π, ν(k)); π is a trivial cut-free
proof similar to π1 above and ν(k) is:

ψ(s(k))

∀x(P (x) ⇒ P (f(x))) � ∀x(P (x) ⇒ P (fI(s(k), x)))
∖̃
(2)
/

cut
P (c), ∀x(P (x) ⇒ P (f(x))) � P (fI(s(k), c))

where (2) is a simple proof of P (c),∀x(P (x) ⇒ P (fI(s(k), x))) � P (fI(s(k), c)).

5 The Resolution Calculus RS

Here we define the schematic resolution calculus RS, which is more general than
that introduced in [3]. We define the calculus as a term algebra. Such kind of
definition is not new and it was investigated for example in [10,13].
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We extend our language by introducing clause variables, denoted by X,Y ,
and clause-set variables, denoted by X ,Y. Substitutions are defined as usual, by
mapping variables to the terms of corresponding type. Our aim is to develop a
framework for specifying schemata of clause sets and their resolution refutations,
which is vital to the ceres-method. Our first step is to define clause schemata.

Example 5.1. Let us assume we want to specify the infinite sequence of clauses

Dγ : Q(x0, y0) � P (x0, y0), . . . , P (x0, f
γ(yγ)), R(x0, z).

for γ ∈ ω. In this sequence of clauses neither the lengths of the clauses nor the
number of variables in the clauses is bounded. To handle the infinite sequence
of variables we use schematic variables of type ω → ι (see Sect. 3) and for the
increasing length an inductive definition based on the merge of clauses.

Definition 5.1 (Clause Schema). Let a be an arithmetic term, u a sequence
of schematic variables and X a sequence of clause variables. Then c(a, u,X) is
a clause schema w.r.t. the rewrite system R:

c(0, u,X) → C ◦ X and c(k + 1, u,X) → c(k, u,X) ◦ D

where C is a clause with V (C) ⊆ {u} and D is a clause with V (D) ⊆ {k, u}.
Clauses and clause variables are clause schemata w.r.t. the empty rewrite system.

We introduce a clause substitution to be a mapping from clause variables to
clauses. Let C1, . . . , Cα be clauses not containing variables of type ω different
from n : ω and γ ∈ N, then θ = [X1/C1, . . . , Xα/Cα] is a clause substitution.
c(n, u,X)θ[n/γ] then denotes the normal form (under R) under the assignment
of n to γ after the application of θ.

Example 5.2. We show now how to specify the sequence of clauses in Example 5.1
in the formalism of Definition 5.1. Let x, y : ω → ι be two schematic variables,
X a clause variable and fI be the defined function symbol from Sect. 2.1. Then
the rewrite rules

c(0, x, y,X) → � P (x(0), y(0)) ◦ X,

c(k + 1, x, y,X) → c(k, x, y,X)◦ � P (x(0), fI(k + 1, y(k + 1)))

together with the substitution θ : [X/Q(x(0), y(0)) � R(x(0), z)] (for z : ι) specify
the sequence Dγ in Example 5.1. Indeed, c(n, x, y,X)θ[n/γ] = Dγ for all γ ∈ ω.

Clause schemata define infinite sequences of clauses. Our next step consists in
describing infinite sequences of clause sets. This is achieved by defining recursive
structure based on so called clause-set terms.

Example 5.3. Sets of clauses can be described via union and merge operators
which play a major role in the specification of characteristic clause sets in ceres.
Let C × D = {C ◦ D | C ∈ C,D ∈ D} be the merge of clause sets C and D, ⊕ an
operator representing union and ⊗ another one representing ×. Then the clause
set

{P (x) � Q(x); P (x), Q(x) �; � P (x), Q(x); Q(x) � P (x)}
can be represented by the term ({P (x) �}⊕{� P (x)})⊗ ({� Q(x)}⊕{Q(x) �}).
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Definition 5.2 (Clause-Set Term). Clause-set terms are defined inductively
using binary symbols ⊕ and ⊗ (which semantically correspond to conjunctions
and disjunctions respectively) in the following way:
– Clause sets and clause-set variables are clause-set terms.
– If Θ1 and Θ2 are clause-set terms, then so are Θ1 ⊕ Θ2 and Θ1 ⊗ Θ2.

Definition 5.3. Let Θ be a clause-set term not containing variables other than
of type ι. Then the set of clauses |Θ| assigned to Θ is defined as |C| = C for
clause sets C, |Θ1 ⊗ Θ2| = |Θ1| × |Θ2|, and |Θ1 ⊕ Θ2| = |Θ1| ∪ |Θ2|.
Example 5.4. Let Dγ (for γ ∈ ω) be the set of clauses {P (ui) � P (ui) | i =
0, . . . , γ} ∪ {P (f i−1(ui)) � P (f i(ui)) | i = 1, . . . , γ} ∪ {� P (c); P (fγ(c)) �} for
γ ∈ ω. We see that the number of clauses in the sets, the number of variables,
and the term depths increase with increasing γ. Below we will define a formalism
for specifying such sequences of clause sets.

Definition 5.4. Let Θ be a clause-set term, X1, . . . ,Xα clause-set variables and
C1, . . . , Cα objects of appropriate type. Then Θ[X1/C1, . . . ,Xα/Cα] is called a
clause-set term over {C1, . . . , Cα}.
Note that, according to the definition above, every ordinary clause-set term is
also a clause-set term over any set {C1, . . . , Cα})

Definition 5.5 (Clause-Set Schema). A clause-set schema C(n) is a struc-
ture (C1, . . . , Cα) together with a set of rewrite rules R = R1 ∪ . . . ∪ Rα, where
the Ri (for 1 ≤ i ≤ α) are pairs of rewrite rules

Ci(0, ui,Xi,X i) → Θ′
i and Ci(k + 1, ui,Xi,X i) → Θi

where Θ′
α is a clause-set term and the other Θ′

i and Θi are clause-set terms over
terms in C1, . . . , Cα, such that V(Θ′

i) ⊆ {ui,Xi,X i} and V(Θi) ⊆ {k, ui,Xi,X i}.
Furthermore, we assume that Ci(γ, ui,Xi,X i) is strongly normalizing for all

γ ∈ N.

Note that the above definition is more liberal than the definitions of proof
schemata and the schematic language: there, the rewrite rules representing the
definitions of the symbols are required to be primitive recursive, and are therefore
strongly normalizing. Here, we allow any “well-formed”, i.e. strongly normaliz-
ing, definition. We will make use of this more liberal definition in Definition 6.1,
where a class of clause-set schemata is defined in a mutually recursive way.

We define a clause-set substitution as a mapping from clause-set variables to
clause-set terms. Let ϑ be a clause-set substitution, θ be a clause substitution
and γ ∈ N, then C(γ) ↓ denotes a clause set |C| where C is a normal form of
C1(n, u1,X1,X 1)ϑθ[n/γ] w.r.t. R extended with the rewrite rules for defined
function and predicate symbols.
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Example 5.5. Let Dγ be the sequence of clause sets specified in Example 5.4.
The following rewrite system (using no clause variables and clause set variables,
but the schematic variable u) specifies Dγ :

C1(0, u) → {�},

C1(k + 1, u) → C2(k + 1, u) ⊕ ({� P (c)} ⊕ {P (fI(k + 1, c)) �}),
C2(0, u) → {P (fI(0, u(0))) � P (fI(0, u(0)))},

C2(k + 1, u) → C2(k, u) ⊕ ({P (u(k + 1)) � P (u(k + 1))} ⊕
({P (fI(k, u(k + 1))) �} ⊗ {� P (fI(k + 1, u(k + 1)))})).

Indeed, the normal form of C1(n, u)[n/γ] is just Dγ for γ ∈ ω.

Definition 5.6. A clause-set schema C(n) is unsatisfiable iff for all γ ∈ N,
C(γ)↓ is unsatisfiable.

The clause-set schema defined in Example 5.5 is unsatisfiable because, for every
γ, Dγ is an unsatisfiable set of clauses.

Analogously to clause-set schemata, we define a resolution proof schema as
a recursive structure based on resolution terms.

Definition 5.7 (Resolution Term). Clause schemata are resolution terms; if
ρ1 and ρ2 are resolution terms, then r(ρ1; ρ2;P ) is a resolution term, where P
is an atom formula schema.

r(ρ1; ρ2;P ) expresses the result obtained by resolving the clauses derived by ρ1
and ρ2, where P is the resolved atom (still without specification of the most
general unifier).

We define a notion of resolution proof schema in the spirit of LKS-proof
schemata.

Definition 5.8 (Resolution Proof Schema). A resolution proof schema R(n)
is a structure (�1, . . . , �α) together with a set of rewrite rules R = R1 ∪ . . .∪Rα,
where the Ri (for 1 ≤ i ≤ α) are pairs of rewrite rules

�i(0, ui,Xi) → ρ′
i and �i(k + 1, ui,Xi) → ρi

where ρ′
i is a resolution term over terms of the form �j(aj , tj , Cj), and ρi is a

resolution term over terms of the form �j(aj , tj , Cj) and �i(k, ti, Ci) for 1 ≤ i <
j ≤ α.

To evaluate resolution proof schemata we need a stronger notion of substitution,
which will unify schematic variables with term schemata. The idea is to specify a
global unifier for the whole schema instead of single unifiers for resolution steps.

Definition 5.9 (Substitution Schema). Let u1, . . . , uα be schematic variable
symbols of type ω → ι and t1, . . . , tα be term schemata containing only k as
arithmetic variable. Then a substitution schema is an expression of the form
[u1/λk.t1, . . . , uα/λk.tα].
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The intended semantics of a substitution schema is that for all γ ∈ N we have a
substitution [u1(γ)/t1 ↓γ , . . . , uα(γ)/tα ↓γ ].

Let R(n) = (�1, . . . , �α) be a resolution proof schema, θ be a clause substi-
tution, ϑ be a substitution schema and γ ∈ N, then R(γ)↓ denotes a resolution
term which is normal form of �1(n, u1,X1)θϑ[n/γ] w.r.t. R extended with rewrite
rules for defined function and predicate symbols.

It remains to define the notion of a resolution refutation schema of a clause-
set schema.

Definition 5.10 (Resolvent). Let C : Γ � Δ and D : Π � Λ be clauses not con-
taining arithmetic variables and let P be an atom. Then the clause res(C,D,P ) =
Γ,Π\P � Δ\P,Λ is called the resolvent of C and D on P , where Π\P (resp. Δ\P )
denotes the multi-set of atoms in Π (resp. Δ) after removal of all occurrences of P .
In case P does not occur in Δ and Π, res(C,D,P ) is called a pseudo-resolvent.

Note that even if res(C,D,P ) is a pseudo-resolvent, inferring it from C and D is
sound in any case. Let C be a clause and σ be a substitution. Then Cσ is called
an instance of C. Let C,D be sets of clauses such that all C ∈ C are instances of
clauses in D. Then C is called an instantiation of D.

Definition 5.11 (Resolution Deduction). If C is a clause then C is a res-
olution deduction with end-sequent C. If ρ1 and ρ2 are resolution deductions
with end-sequents respectively C1 and C2, such that for an atom P there is a
resolvent res(C1, C2, P ) = D, then ρ = r(ρ1, ρ2, P ) is a resolution deduction with
end-sequent D. Let C be a set of clauses. If the set of all clauses occurring in
ρ is an instantiation of C, then ρ is called a resolution deduction from C and if
D = � then ρ is called a resolution refutation of C.

Note that resolution terms, containing only ordinary clauses and atoms, repre-
sent resolution deductions iff under evaluation of r by res, we obtain a consistent
structure of resolvents.

Definition 5.12 (Refutation Schema). A resolution proof schema R(n) is
called a resolution deduction schema from a clause-set schema C(n) if there
exist a clause substitution and a substitution schema such that for every γ ∈ N,
R(γ)↓ is a resolution deduction from C(γ)↓.

Furthermore, if for all γ ∈ N, R(γ)↓ is a resolution refutation of C(γ)↓, then
R(n) is called a resolution refutation schema of C(n).

Example 5.6. Consider the clause set schema defined in Example 5.5 specify-
ing the sequence of clause sets (Dγ)γ∈ω. We define resolution refutations of Dγ

informally in the following way: Start with the clause � P (c) in Dγ . Assume
inductively that you have already derived � P (fγ−1(c)) from Dγ for γ > 0;
then by resolving with the clause P (u1) � P (f(u1)) (which is in Dγ) you obtain
� P (fγ(c)). In the final step you resolve � P (fγ(c)) with P (fγ(c)) � (which is
in Dγ) to obtain �.



Cut-Elimination and Proof Schemata 129

For the formal specification by rewrite rules we use the schematic variable u
and two symbols �1, �2:

�1(0, u) → �,

�1(k + 1, u) → r(�2(k + 1, u); [P (fI(k + 1, c)) �]; P (fI(k + 1, c))),
�2(0, u) → � P (c),

�2(k + 1, u) → r(�2(k, u); [P (u(k + 1)) � P (f(u(k + 1)))]; P (fI(k, c))).

Note that, for computation of a global substitution for unification, we have
renamed P (u(1)) � P (f(u1)) for every new application of the clause. The required
substitution schema θ is [u/λk.fI(pre(k), c)] for pre(0) → 0 and pre(k + 1) → k,
formalizing the predecessor function. Then �(n, u)θ[n/γ] is a resolution refutation
of Dγ .

We illustrate the specification for γ = 2: It is easy to verify that, on �(2, u),
the rewrite system produces the resolution term

r( r( r([� P (c)]; [P (u(1)) � P (f(u(1)))]; P (c));
[P (u(2)) � P (f(u(2)))]; P (f(c)));

[P (f(f(c))) �]; P (f(f(c)))).

after application of θ this term becomes

r(r(r(� P (c); [P (c) � P (f(c))]; P (c)); [P (f(c)) � P (f(f(c)))]; P (f(c)));
[P (f(f(c))) �]; P (f(f(c)))).

which specifies the refutation of D2 defined informally above. Its representation
by a sequence of clauses would be

[� P (c)], [P (c) � P (f(c))], [� P (f(c))], [P (f(c)) � P (f(f(c)))],
[� P (f(f(c)))], [P (f(f(c))) �], [�].

Proposition 5.1. If R is a resolution refutation schema of a clause-set schema
C then C is unsatisfiable.

Proof. By Definition 5.12 we obtain, under the chosen substitution schema, a
resolution refutation of C(γ) for all γ. But by Definition 5.6 this means, under
the assumption of soundness of ordinary resolution, that the clause-set C is
unsatisfiable. ��
Corollary 5.1. The resolution calculus RS is sound. ��
Completeness does not hold for RS, since unsatisfiability of schemata is a prop-
erty which is not semi-decidable even for propositional schemata (see [2]).

6 A Cut-Elimination Method for LKS

In this section we consider the problem of cut-elimination for proof schemata.
Note that (trivially) for every γ ∈ N we can obtain a cut-free proof of S(γ) by



130 C. Dunchev et al.

computing Ψ ↓γ , which contains cuts, and then applying a usual cut-elimination
algorithm. What we are interested in here is rather a schematic description of
all the cut-free proofs for a parameter n. It is not possible to obtain such a
description by naively applying Gentzen-style cut-elimination to the LKS-proofs
in Ψ , since it is not clear how to handle the case

ψ1(a1)

Γ � Δ, C

ψ2(a2)

C, Π � Λ
cut

Γ, Π � Δ, Λ

as this would require “moving the cut through a proof link”. This is not a problem
of our calculi in particular, but a general one for such kind of proofs (see [8]). In this
paper, we will go a different route: we define an extension of the ceresmethod,
which is based on a global analysis of the proof schema. It will eventually yield the
desired schematic description of the sequence of cut-free proofs.

6.1 The Characteristic Term

At the heart of the ceresmethod lies the characteristic clause set, which
describes the cuts in a proof. The connection between cut-elimination and the
characteristic clause set is that any resolution refutation of the characteristic
clause set can be used as a skeleton of a proof containing only atomic cuts.

The characteristic clause set can either be defined directly as in [6], or it can
be obtained via a transformation from a characteristic term as in [7]. We use the
latter approach here; the reason for this will be explained later.

Our main aim is to extend the usual inductive definition of the characteristic
term to the case of proof links. This will give rise to a notion of schematic
characteristic term. The usual definition of the characteristic term depends upon
the cut-status of the formula occurrences in a proof (i.e. whether a given formula
occurrence is a cut-ancestor, or not). But a formula occurrence in a proof schema
gives rise to many formula occurrences in its evaluation, some of which will be
cut-ancestors, and some will not. Therefore we need some machinery to track the
cut-status of formula occurrences through proof links. Hence we call a set Ω of
formula occurrences from the end-sequent of an LKS-proof π a configuration for
π. We are interested of those configurations which keep track of all cut-ancestors
in a proof schema Ψ as well as the propagation of the cut-ancestors through the
proof links. A configuration Ω for π is called relevant w.r.t. a proof schema Ψ if
π is a proof in Ψ and there is a γ ∈ N such that π induces a subproof π′ of Ψ ↓γ

such that the occurrences in Ω correspond to cut-ancestors in π′. Note that the
set of relevant cut-configurations can be computed given a proof schema Ψ .

Next, we will represent the characteristic term of a proof link in our object
language: For all proof symbols ψ and configurations Ω we assume a unique
symbol clψ,Ω called clause-set symbol. The intended semantics of clψ,Ω(a) is
“the characteristic clause set of ψ(a), with the configuration Ω”.

Definition 6.1 (Characteristic Term). Let π be an LKS-proof and Ω a con-
figuration. In the following, by ΓΩ ,ΔΩ and ΓC ,ΔC we will denote multisets of
formulas of Ω- and cut-ancestors respectively. Let r be an inference in π. We
define the clause-set term Θπ,Ω

r inductively:
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– if r is an axiom of the form ΓΩ , ΓC , Γ � ΔΩ ,ΔC ,Δ, then Θπ,Ω
r = [ΓΩ , ΓC �

ΔΩ ,ΔC ]

– if r is a proof link of the form ψ(a, u)

ΓΩ , ΓC , Γ � ΔΩ , ΔC , Δ
then define Ω′ as the set

of formula occurrences from ΓΩ , ΓC � ΔΩ ,ΔC and Θπ,Ω
r = clψ,Ω′

(a, u).
– if r is a unary rule with immediate predecessor r′, then Θπ,Ω

r = Θπ,Ω
r′ .

– if r is a binary rule with immediate predecessors r1, r2, then
• if the auxiliary formulas of r are Ω- or cut-ancestors, then Θπ,Ω

r = Θπ,Ω
r1 ⊕

Θπ,Ω
r2 ,

• otherwise Θπ,Ω
r = Θπ,Ω

r1 ⊗ Θπ,Ω
r2 .

Finally, define Θπ,Ω = Θπ,Ω
r0 , where r0 is the last inference of π, and Θπ =

Θπ,∅. Θπ is called the characteristic term of π.

We say that a clause-set term is normal if it does not contain clause-set symbols
and defined function and predicate symbols.

Definition 6.2 (Characteristic Term Schema). Let Ψ = 〈ψ1, . . . , ψα〉 be a
proof schema. We define the rewrite rules for clause-set symbols for all proof
symbols ψβ and configurations Ω:

clψβ ,Ω(0, u) → Θπβ ,Ω and clψβ ,Ω(k + 1, u) → Θνβ(k),Ω

where 1 ≤ β ≤ α. Next, let γ ∈ N and let clψβ ,Ω ↓γ be a normal form of
clψβ ,Ω(γ, u) under the rewrite system just given extended by rewrite rules for
defined function and predicate symbols. Then define Θψβ ,Ω = clψβ ,Ω and ΘΨ,Ω =
Θψ1,Ω and finally the characteristic term schema ΘΨ = ΘΨ,∅.

The definition above explains why we chose to define the characteristic clause
set via the characteristic term: the clause-set term is closed under the rewrite
rules we have given for the clause-set symbols, while the notion of clause set is
not (a clause will in general become a formula when subjected to the rewrite
rules). We say that a clause-set symbol clψ,Ω depends on a clause-set symbol
clϕ,Ω′

, if a term Θψ,Ω contains clϕ,Ω′
. We assume that the dependency relation

is transitive and reflexive.
The following proposition shows that the definition of the characteristic term

schema satisfies the requirement of Definition 5.5.

Proposition 6.1. Let Ψ be a proof schema and ΘΨ be a characteristic term
schema of Ψ . Then ΘΨ is strongly normalizing.

Proof. If the dependency relation on the clause-set symbols occurring in ΘΨ is
acyclic, then the result is trivial. Otherwise, note that according to the defini-
tion of proof schemata, only clause-set symbols for the same proof symbol can
depend on each other. But then, again by Definition 4.2, the parameter is strictly
decreasing. Thus the rewrite rules are strongly normalizing. ��
Example 6.1. Let us consider the proof schema Ψ of the sequent S(n), defined
in Example 4.1. If we compute the characteristic terms for all possible configu-
rations, this would result in a clause set with redundant clauses, having broader
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search space. In order to prune significantly the search space, we make use of
the notion of relevant configurations. In this example there is only one rele-
vant configuration, namely Ω = {∀x(P (x) ⇒ P (fI(k, x)))}, which contains the
cut-ancestor for ϕ which is propagated through the proof link to ψ. The ∅ con-
figuration for ϕ is also considered as relevant and should be taken into account.
The characteristic term schema of Ψ then is (clϕ,∅, clψ,Ω) with the rewrite system
as given in Example 5.5 with C1 = clϕ,∅ and C2 = clψ,Ω .

Next we show that the notion of characteristic term is well-defined and that eval-
uation and extraction of characteristic terms commute. The later property will
be used to derive results on schematic characteristic clause sets from standard
results on (non-schematic) ceres. The following propositions are easily proved
by double induction on the parameter and on the number of proof symbols in
the proof schema.

Proposition 6.2. Let Ψ be a proof schema and Ω be a configuration, then
Θψβ ,Ω ↓γ is a normal clause-set term for all 1 ≤ β ≤ α and γ ∈ N. Hence
ΘΨ ↓γ is a normal clause-set term. ��
Proposition 6.3. Let Ψ be a proof schema, Ω be a configuration and γ ∈ N.
Then ΘΨ↓γ ,Ω = ΘΨ,Ω ↓γ . ��
From the characteristic term we finally define the notion of characteristic clause
set. For a normal LKS-proof π and configuration Ω, CL(π,Ω) = |Θπ,Ω |. We
define the standard characteristic clause set CL(π) = CL(π, ∅) and the schematic
characteristic clause set CL(Ψ)↓γ= |ΘΨ ↓γ |.
Example 6.2. For the characteristic term schema from Example 6.1 we have
CL(Ψ)↓0= {�} and CL(Ψ)↓γ= Dγ for γ > 0 and Dγ from Example 5.4.

Finally, we prove that the schematic characteristic clause set is always unsatis-
fiable.

Proposition 6.4. Let π be a normal LKS-proof. Then CL(π) is unsatisfiable.

Proof. By the identification of normal LKS-proofs with LK-proofs, the result
follows from Proposition 3.2 in [6]. ��
Proposition 6.5. For a proof schema Ψ , CL(Ψ)↓γ is unsatisfiable for all γ ∈ N.

Proof. By Proposition 6.3 CL(Ψ)↓γ= CL(Ψ ↓γ) which is unsatisfiable by Propo-
sition 6.4. ��

6.2 Atomic Cut Normal Form Schema

We are ready to produce a description of cut-free proofs, which is called Atomic
Cut Normal Form Schema, shortly ACNF schema.
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Definition 6.3 (ACNF Schema). Let Ψ be a proof schema with end-sequent
S(n), and R be a resolution refutation schema of the schematic characteristic
clause set CL(Ψ). Let ϑ be the substitution schema corresponding to R. Then the
pair (R,ϑ) is an ACNF schema of Ψ .

Example 6.3. An ACNF schema of the proof schema Ψ is given in Example 5.6
since Dγ = CL(Ψ)↓γ .

6.3 Herbrand Systems

By the Herbrand-Gentzen Theorem we will denote the following well-known
result.

Theorem 6.1. Let π be an LKE-proof of a closed formula

ψ : ∃x1 · · · ∃xαF (x1, . . . , xα)

with F (x1, . . . , xα) quantifier-free such that π contains only quantifier-free cuts.
Then there exist terms t1,1, . . . , t1,α, . . . , tι,1, . . . , tι,α such that F (t1,1, . . . , t1,α)∨
· · · ∨ F (tι,1, . . . , tι,α) is LKE-provable, and the sum of the sizes of the tλ,κ is
bounded by the size of π.

This result is of both theoretical and practical importance: theoretically, it gives
the precise relation between propositional and first-order provability, and prac-
tically it can be used to present the content of a first-order proof to a human in
a way that abstracts from the propositional content of the proof. Note that the
assumption of quantifier-free cuts is necessary for the complexity bound stated
in the theorem.

Definition 6.4. Let ψ(n) = ∃x1 · · · ∃xαF (n, x1, . . . , xα) with F (n, x1, . . . , xα)
quantifier-free and n : ω the only free variable of ψ(n). Then a Herbrand system
for ψ(n) is a rewrite system R (containing the list constructors and a func-
tion symbol w) such that for all β ∈ N, the normal form of w(β) w.r.t. R is
a list of lists of terms tγ,δ (of length ι) such that F (β, t1,1, . . . , t1,α) ∨ · · · ∨
F (β, tι,1, . . . , tι,α) is LKE-provable.

We will prove a generalization of the Herbrand-Gentzen Theorem for ACNF
schemata: given a Herbrand system H and an ACNF schema (R, θ) of Ψ , consider
the functions h : β �→ |w(β)| and a : β �→ |R(β) ↓ ||Ψ(β) ↓ | (where | · | denotes
symbolic size) bounding the complexity of normal forms of the schematic data
structures. We will show how to extract a Herbrand system from an ACNF
schema such that h is bounded by a (modulo a constant). This shows that
the ACNF schema already contains all the first-order information of the cut-
free proof — and that information can be accessed without reference to the
usual Gentzen-style cut-reduction rules. This indicates that in the analysis of
concrete proof schemata via CERES, it will suffice to analyze the Herbrand
system extracted from an ACNF schema.
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Theorem 6.2. Let ψ(n) = ∃x1 · · · ∃xαF (n, x1, . . . , xα), Ψ be a proof schema
with end-sequent � ψ(n), and (R, θ) an ACNF schema of Ψ . Then there exists
a Herbrand system H for ψ(n) such that for all β ∈ N, |w(β) ↓ | ≤ 2|R(β) ↓
||Ψ(β)↓ |.
Proof. We sketch the construction of H. H contains the rewrite rules for the
defined function symbols, a constant ε (the empty list), and a binary function
symbol list (list constructor). For all function symbols f , we add rewrite rules
f(list(x, y)) → list(f(x), f(y)) and f(ε) → ε. A list of terms t1, . . . , tλ is encoded
in R as the term list(t1, list(t2, . . . (list(tλ, ε) · · · ). Furthermore, R contains binary
function symbols prepend and merge with rewrite rules ensuring that prepend
prepends a list to another, and merge takes two lists l1, . . . , lλ and l′1, . . . , l

′
λ

and returns the list prepend(l1, l′1), . . . ,prepend(lλ, l′λ). We proceed by structural
induction on the proofs in Ψ , adding (for every cut-configuration Ω) a function
symbol wS,Ω and appropriate rewrite rules for every sequent S(n) in Ψ such
that wS,Ω(β) normalizes to the list of witnesses of ψ induced by the sequent in
Ψ(β) ↓ that corresponds to S(n) in case Ω is the correct cut-configuration for
that sequent (i.e. we formalize the proof of the Herbrand-Gentzen theorem as
a rewrite system, ignoring witnesses of cut-ancestors). In this construction, the
(schematic) variables in Ψ are considered as function symbols. For R, we add
rewrite rules to collect the instances of the clauses; this requires an additional
parameter since a variable not depending on k may be instantiated by a term
depending on k. Finally, if θ = [x1/λk.t1, . . . , xα/λk.tα], we add the rewrite rules
xι(k) → tι.

This yields the desired rewrite system: According to the CERES method for
first-order logic, Ψ(β) ↓ and R(β) ↓ can be combined to a cut-free proof of size
|R(β) ↓ ||Ψ(β) ↓ |. By construction, w(β) ↓ contains the witnesses contained in
that proof, the size of which is bounded by |R(β) ↓ ||Ψ(β) ↓ | by construction,
and additionally some spurious witnesses (corresponding to clauses that have not
been used in the refutation) the size of which is bounded by |R(β) ↓ ||Ψ(β) ↓ |
as well. ��
Example 6.4. Continuing Example 6.3 (remembering also the definition of Ψ in
Example 4.1), we describe the Herbrand system H extracted from the ACNF
schema given there. The following rules are obtained from H after applying some
simplifications combining the many rewrite rules introduced by the structural
induction into bigger, simpler rules. The first group of rules is induced by the ∀l

inferences operating on end-sequent ancestors in Ψ :

wϕ,∅(0, j) → list(ε, ε)

wϕ,∅(k + 1, j) → merge(wψ,Ω(k + 1, j), list(ε, ε))

wψ,Ω(0, j) → list(ε, ε)

wψ,Ω(k + 1, j) → merge(wψ,Ω(k, j), list(fI(k, u(s(k), j)), ε))
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The second group of rules is induced by θ and the fact that u(1) is instantiated
in R by a term containing the parameter k (necessitating a second argument
place).

x(k) → fI(pre(k), c)
u(1, k + 1) → list(x(k + 1), u(1, k))

u(1, 0) → ε

The rewrite rule w(k) → wϕ,∅(k, k) is always added. H furthermore contains the
rewrite rules for pre, fI as given earlier, and rewrite rules for merge,prepend as
discussed above. A simple computation yields the witnesses for β = 2:

w(2) → wϕ,∅(2, 2) → merge(wψ,Ω(2, 2), list(ε, ε))

wψ,Ω(2, 2) → merge(wψ,Ω(1, 2), list(f(u(2, 2)), ε))

wψ,Ω(1, 2) → merge(wψ,Ω(0, 2), list(fI(0, u(1, 2)), ε))
→ merge(list(ε, ε), list(x(2), list(x(1), ε)))
→ list(x(2), list(x(1), ε))

Eventually yielding w(2) → list(f(u(2, 2)), list(f(c), list(c, ε))), i.e. the witnesses
f(c), c and the spurious witness f(u(2, 2)) corresponding to an unused clause.

7 Open Problems

The current results can be considered as a first step of performing cut-elimination
in inductive proofs. Currently our formalism admits just one parameter and
thus is not capable of modeling nested inductions. Hence a generalization of the
method to several parameters is highly desirable. While the construction of the
schematic characteristic clause sets is fully mechanizable (and already imple-
mented under the GAPT framework1, see [11]), a fully automated construction
of schematic resolution refutations is impossible even in principle. However, for
practical proof analysis of nontrivial proofs an interactive use of the schematic
resolution calculus and a formal verification of the obtained proofs would be
vital. The current schematic resolution method is very strong and the task of
determining the schematic most general unifiers is not mechanizable. It would
be useful to search for weaker systems admitting a higher degree of automation
which are still capable of formalizing relevant problems. Nevertheless, we believe
that (the current implementation of) the method can also serve as a tool for a
semi-automated development of proof schemata by mathematicians.
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14. Martin-Löf, P.: Hauptsatz for the Intuitionistic Theory of Iterated Inductive Def-
initions. In: Proceedings of the Second Scandinavian Logic Symposium, vol. 63 of
Studies in Logic and the Foundations of Mathematics, pp. 179–216 (1971)

15. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction.
Theoret. Comput. Sci. 232(1–2), 91–119 (2000)

16. Rukhaia, M.: CERES in Proof Schemata. Ph.D. thesis, Vienna University of Tech-
nology (2012)

17. Salzer, G.: On the Relationship between Cycle Unification and the Unification of
Infinite Sets of Terms. In: Baader, F., Snyder, W. (eds.) UNIF 1993, Mass, Boston
(1993)

18. Takeuti, G.: Proof Theory, 2nd edn. North Holland, Amsterdam (1987)

http://arxiv.org/abs/1303.4257
http://arxiv.org/abs/1303.4257


Towards a Suppositional Inquisitive Semantics

Jeroen Groenendijk and Floris Roelofsen(B)

Institute for Logic, Language, and Computation, University of Amsterdam,
Amsterdam, The Netherlands
floris.roelofsen@gmail.com

Abstract. One of the primary usages of language is to exchange infor-
mation. This can be done directly, as in Will Susan sing? No, she won’t,
but it is also often done in a less direct way, as in If Pete plays the piano,
will Susan sing? No, if Pete plays the piano, Susan won’t sing. In the lat-
ter type of exchange, both participants make a certain supposition, and
exchange information under the assumption that this supposition holds.
This paper develops a semantic framework for the analysis of this kind of
information exchange. Building on earlier work in inquisitive semantics,
it introduces a notion of meaning that captures informative, inquisi-
tive, and suppositional content, and discusses how such meanings may
be assigned in a natural way to sentences in a propositional language.
The focus is on conditionals, which are the only kind of sentences in a
propositional language that introduce non-trivial suppositional content.

1 Towards a More Fine-Grained Notion of Meaning

Traditionally, the meaning of a sentence is identified with its informative con-
tent, and the informative content of a sentence is taken to be determined by its
truth conditions. Thus, the proposition expressed by a sentence is construed as
a set of possible worlds, those worlds in which the sentence is true, and this set
of worlds is taken to determine the effect that is achieved when the sentence is
uttered in a conversation. Namely, when the sentence is uttered, the speaker is
taken to propose an update of the common ground of the conversation (Stalnaker
1978). The common ground of a conversation is the body of information that
has been publicly established in the conversation so far. It is modeled as a set of
possible worlds, namely those worlds that are compatible with the established
information. When a speaker utters a sentence, she is taken to propose to update
the common ground by restricting it to those worlds in which the uttered sen-
tence is true, i.e., those worlds that are contained in the proposition expressed
by the sentence. If accepted by the other conversational participants, this update
ensures that the new common ground contains the information that the uttered
sentence is true.
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This basic picture of sentence meaning and the effect of an utterance in
conversation has proven very useful, but it also has some inherent limitations.
Perhaps most importantly, it is completely centred on informative content and
truth conditions. Evidently, there are many meaningful sentences in natural lan-
guage that cannot be thought of as being true or false. Questions are a prominent
case in point. For instance, the meaning of the question Is Susan singing? clearly
cannot be taken to reside in its truth conditions. So in order to deal with such
sentences, the basic picture sketched above needs to be generalized. One way to
do this has been articulated in recent work on inquisitive semantics (e.g. Ciardelli
2012; 2013). The basic idea is that a speaker who utters Is Susan singing? still
proposes to update the common ground of the conversation; however, she does
not propose one particular update, but rather offers a choice: one way to com-
ply with her proposal would be to restrict the common ground to worlds where
Susan is singing, but another way to comply with her proposal, equally accept-
able, would be to restrict the common ground to worlds where Susan is not
singing. So the basic Stalnakerian picture of the effect of an utterance in terms
of issuing a proposal to update the common ground of the conversation can
be generalized appropriately, in such a way that it applies to declarative and
interrogative sentences in a uniform way.

What about the basic truth conditional notion of sentence meaning? How
could this be suitably generalized? The simplest approach that has been explored
in inquisitive semantics is to move from truth conditions to support conditions.
The idea is that the meaning of a sentence should determine precisely which
pieces of information support the proposal that a speaker makes in uttering the
sentence. This notion of meaning is adopted in the most basic implementation
of inquisitive semantics, InqB.1 Clearly, the support based notion of meaning
is directly tied to the idea that the conversational effect of an utterance is a
proposal to update the common ground in one or more ways. The latter—let’s
call it the proposal picture of conversation—is one of the main tenets of the
inquisitive semantics framework in general, not just of the particular system
InqB. The support based notion of meaning, on the other hand, is specific to
InqB. It ties in well with the proposal picture of conversation, but there may
well be other notions of meaning that also tie in well with this picture.

The goal of this paper is to develop such a notion of meaning, which is more
fine-grained than the InqB notion. Motivation for such a more fine-grained notion
comes from the basic observation that proposals may not only be supported by a
given piece of information; they may also be rejected or dismissed. To illustrate,
consider (1a), and the two responses to it in (1b) and (1c):

(1) a. If Pete plays the piano, Susan will sing.
b. No, if Pete plays the piano, Susan won’t sing.
c. Pete won’t play the piano.

1 See Ciardelli (2009); Groenendijk and Roelofsen (2009); Ciardelli and Roelof-
sen (2011) for early expositions of InqB, and Roelofsen (2013); Ciardelli et al. (2013)
for a more recent perspective and comparison with earlier work on the semantics of
questions (e.g., Hamblin 1973; Karttunen 1977; Groenendijk and Stokhof 1984).
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Intuitively, both (1b) and (1c) are pertinent responses; they address the proposal
that (1a) expresses. However, rather than supporting the proposal, (1b) rejects
it, while (1c) dismisses a supposition of it and thereby renders it void.

We will consider what it means in general to reject a proposal or to dismiss
a supposition of it, and how these notions are related to each other, as well as
to support. We will define a semantics for a propositional language, which spec-
ifies recursively for every sentence (i) which information states (or equivalently,
which pieces of information) support it, (ii) which information states reject it, and
(iii) which information states dismiss a supposition of it. We refer to this system as
InqS. We will argue that the more fine-grained notion of meaning adopted in InqS
considerably broadens the empirical scope of InqB, especially in the domain of
conditionals. In Aher 2014 it is shown that the framework developed here allows
for a novel treatment of epistemic and deontic modals as well, with interesting
connections to the treatment of conditionals presented here.2

The paper is organized as follows. Section 2 reviews the background and
motivation for InqS in more detail; Sect. 3 presents the system itself, identifying
its basic logical properties and discussing some illustrative examples; and finally,
Sect. 4 summarizes and concludes.

2 Background and Motivation

2.1 Support and Persistence

In a support based semantics, the basic idea is that one knows the meaning
of a sentence just in case one knows which information states—or equivalently,
which pieces of information—support the given sentence, and which don’t. For
instance, an information state s, modeled as a set of possible worlds, supports
an atomic declarative sentence p just in case every world in s makes p true;
it supports ¬p if every world in s makes p false; and finally, it supports the
interrogative sentence ?p just in case it supports either p or ¬p.

2 One way to reject the proposal expressed by (1a), not listed above, is as follows:
(i) No, if Pete plays the piano, Susan might not sing.
This response involves the epistemic modal might. Accounting for such responses is
beyond the scope of the current paper, but not beyond the scope of InqS in general.
Indeed, the InqS analysis of epistemic modals presented in Aher 2014 naturally char-
acterizes (i) as a rejecting response to (1a), and also clearly brings out the differ-
ence between (i) and (1b). Namely, (i) rejects (1a) in a defeasible way, subject to
possible retraction when additional information becomes available, while (1b) rejects
(1a) indefeasibly. Or, phrased in terms of conversational attitudes, (i) signals that the
addressee is unwilling to accept the proposal expressed by (1a), while (1b) signals that
she is really unable to do so.

There is a rich psycholinguistic literature on the denial of conditional statements
(see, e.g., Handley 2006; Espino and Byrne 2012; Égré and Politzer 2013, and refer-
ences therein), but the distinction between defeasible and indefeasible rejection has,
to the best of our knowledge, not been brought to attention previously.
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Given such a support-based semantics, we can think of a speaker who utters
a sentence ϕ as proposing to enhance the common ground of the conversation,
modeled as an information state, in such a way that it comes to support ϕ. Thus,
in uttering p a speaker proposes to enhance the common ground in such a way
that it comes to support p, and in uttering ?p a speaker proposes to enhance the
common ground in such a way that it comes to support either p or ¬p.

Prima facie it is natural to assume that support is persistent, that is, if an
information state s supports a sentence ϕ, then it is natural to assume that
every more informed information state t ⊂ s will also support ϕ. In other words,
information growth cannot lead to retraction of support. This assumption is
indeed made in InqB, and it determines to a large extent how the system behaves.

2.2 Support for Conditionals

Let us now zoom in on conditional sentences, which is where we would like
to argue that a more refined picture is ultimately needed. Consider again the
conditional statement in (1a), repeated in (2) below, and the corresponding
conditional question in (3):

(2) If Pete plays the piano, Susan will sing. p → q

(3) If Pete plays the piano, will Susan sing? p → ?q

The meanings of these sentences in InqB can be depicted as follows:

11 10

01 00

(a) p → q

11 10

01 00

(b) p → ?q

In these figures, 11 is a world where p and q are both true, 10 a world where p
is true but q is false, etcetera. We have only depicted the maximal states that
support each sentence. Since support is persistent, all substates of these maximal
supporting states also support the given sentences.

In general, in InqB a state s is taken to support a conditional sentence ϕ → ψ
just in case every state t ⊆ s that supports ϕ also supports ψ. For instance, the
state s = {11, 01, 00} supports p → q, because any substate t ⊆ s that supports
p (there are only two such states, namely {11} and ∅) also support q. Similarly,
one can verify that the states {11, 01, 00} and {11, 01, 00} both support p → ?q.

For convenience, we will henceforth use |ϕ| to denote the state consisting of
all worlds where ϕ is classically true. So the states {11, 01, 00} and {10, 01, 00}
can be denoted more perspicuously as |p → q| and |p → ¬q|, respectively.
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2.3 Support and Reject

The support conditions for a sentence ϕ capture an essential aspect of the pro-
posal that is made in uttering ϕ, namely what is needed to compliantly settle this
proposal. However, besides compliantly settling a given proposal, conversational
participants may react in different ways as well. In particular, they may reject
the proposal. What does it mean exactly to reject the proposal made in utter-
ing ϕ? And can this, perhaps indirectly, be explicated in terms of the support
conditions for ϕ as well?

At first sight, this seems quite feasible indeed. Suppose that a speaker A
utters a sentence ϕ, and a responder B reacts with ψ. A proposes to enhance
the common ground to a state that supports ϕ, while B proposes to enhance the
common ground to a state that supports ψ. Then we could say that B rejects A’s
initial proposal just in case any state s that supports ψ is such that no consistent
substate t ⊆ s supports ϕ. After all, if this is the case, then any way of satisfying
B’s counterproposal leads to a common ground which does not support ϕ and
which cannot be further enhanced in any way such that it comes to support ϕ
while remaining consistent.

For many basic cases, this characterization of rejection in terms of support
seems adequate. For instance, if A utters an atomic sentence p and B responds
with ¬p, then according to the given characterization, B rejects A’s initial pro-
posal, which accords with pre-theoretical intuitions.

However, in the case of conditionals, the given characterization is problem-
atic. Intuitively, the proposal expressed by (2) above can be rejected with (4).

(4) No, if Pete plays the piano, Susan won’t sing. p → ¬q

However, there is a consistent state that supports both (2) and (4), namely |¬p|.
So according to the above characterization, (4) does not reject (2).

This example illustrates something quite fundamental: in general, reject con-
ditions cannot be derived from support conditions. Thus, a semantics that aims
to provide a comprehensive characterization of the proposals that speakers make
when uttering sentences in conversation, needs to specify both support- and
reject-conditions (and perhaps more). InqB, which is only concerned with sup-
port, has been extended in previous work to a semantics that specifies reject
conditions as well, with the aim to deal with the type of phenomena discussed
here. The resulting framework is referred to as radical inquisitive semantics, InqR
for short (Groenendijk and Roelofsen 2010; Sano 2012; Aher 2013).3

3 The need to specify both support and reject conditions is independent from the need
to have a notion of meaning that embodies inquisitive content. There is a lot of work
addressing the first issue while leaving inquisitive content out of the picture, e.g.,
work on data semantics (Veltman 1985), game-theoretic semantics and independence
friendly logic (Hintikka and Sandu 1997; Hodges 1997), dependence logic (Väänänen
2007), and truth-maker semantics (Fraassen 1969; Fine 2012).
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2.4 Dismissing a Supposition

The semantics to be developed in the present paper further extends the InqR
framework, providing yet a more comprehensive characterization of the propos-
als that speakers make when uttering sentences in conversation. This further
refinement is motivated by the observation that, besides compliant support and
full-fledged rejection, there is, as we saw already in the introduction, yet another
way to react to the conditionals in(2) and(3):

(5) Pete won’t play the piano. ¬p

Suppose that A utters (2) or (3) and that B reacts with (5). One natural way
to think about this response is as one that dismisses a supposition that A was
making, namely the supposition ‘that Pete will play the piano’.

Clearly, the suppositions that a speaker makes in issuing a certain proposal,
and responses that dismiss such suppositions, cannot be characterized purely in
terms of the support conditions for that sentence.

2.5 From Radical to Suppositional

At first sight it may seem that suppositional phenomena can be captured if we
have both support- and reject-conditions at our disposal. Indeed, an attempt to
do so has been articulated in work on InqR (see in particular Groenendijk and
Roelofsen 2010, Sect. 3). There, states that dismiss a supposition of a sentence
ϕ are characterized as states that can be obtained by intersecting a state that
supports ϕ with a state that rejects ϕ. Within the broader conceptual framework
of InqR, such states can be thought of as ones that reject the question behind ϕ. If
correct, this connection between support, rejection, and suppositional dismissal
would show that there is no need to further refine the semantic machinery of
InqR in order to deal with suppositional phenomena.

This characterization works fine for simple cases like ¬p in response to p → q.
Namely, |¬p| can be obtained as the intersection of |p → q| and |p → ¬q|, which
support and reject p → q, respectively. So ¬p is correctly predicted to dismiss
a supposition of the conditional. However, the predictions for more complex
cases are not always satisfactory. Consider, for instance, a conditional with a
disjunctive antecedent, and a response rejecting just one of the disjuncts:

(6) a. If Pete or Bill plays the piano, Susan will sing. (p ∨ q) → r
b. Well, Pete won’t play the piano. ¬p

Under the strategy under consideration, InqR fails to predict that (6b) dismisses
a supposition of (6a). Any state s that supports (p∨ q) → r has to support both
p → r and q → r. Then s cannot contain a world w where q holds, and p and r
do not hold. But this world is included in |¬p|. So, |¬p| cannot be obtained as
the intersection of a state that supports (p ∨ q) → r and a state that rejects it.

In order to avoid this and other problematic predictions when characterizing
suppositional dismissal in terms of support and rejection, we will develop a
semantics in which all three notions are characterized separately.
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3 Suppositional Inquisitive Semantics

We will consider a propositional language L, based on a finite set of atomic
sentences P. Complex sentences are built up using the usual connectives, ¬, ∧,
∨, and →, as well as an additional operator, ?. As in InqB, ?ϕ is defined as an
abbreviation of ϕ ∨ ¬ϕ (the rationale behind this will become clear later).

The basic ingredients of the semantics that we will develop for this language
are possible worlds, which we take to be functions mapping every atomic sentence
in P to a truth value, 1 or 0, and information states, which are sets of possible
worlds. For brevity, we will often simply talk about worlds and states instead of
possible worlds and information states. ω will denote the set of all worlds.

The semantics consists in a simultaneous recursive definition of three notions:

s |=+ ϕ s supports ϕ
s |=− ϕ s rejects ϕ
s |=◦ ϕ s dismisses a supposition of ϕ

In terms of these three semantic notions we can define corresponding logical
relations of responsehood along the following lines:4

ψ supports (rejects, dismisses a supposition of) ϕ iff every state that sup-
ports ψ, supports (rejects, dismisses a supposition of) ϕ.

We will denote the set of all states that support a sentence ϕ as [ϕ]+, and
similarly for [ϕ]− and [ϕ]◦. The triple 〈[ϕ]+, [ϕ]−, [ϕ]◦〉 is called the proposition
expressed by ϕ, and is denoted as [ϕ]. If two sentences ϕ and ψ express exactly
the same proposition, they are said to be equivalent, notation ϕ ≡ ψ.

Before turning to the semantics proper, we first introduce some auxiliary
notions which will be helpful in articulating and explaining the system.

3.1 Informative Content and Alternatives

In uttering a sentence ϕ, a speaker proposes to establish a common ground that
supports ϕ. Now suppose that w is a world that is not included in any state that
supports ϕ. Then, any way of compliantly settling the given proposal will lead
to a common ground that does not contain w. Thus, in uttering ϕ, a speaker
proposes to exclude any world that is not in

⋃
[ϕ]+ as a candidate for the actual

world. In other words, she provides the information that the actual world must
be contained in

⋃
[ϕ]+. For this reason, we will refer to

⋃
[ϕ]+ as the informative

content of ϕ, and denote it as info(ϕ).

4 In terms of the three basic semantic notions, a whole range of derived semantic
notions can be defined, which can be used in the same way to define additional logical
responsehood relations. One case in point is the notion of a state s suppositionally
dismissing a sentence ϕ, which holds when s dismisses a supposition of ϕ, and no
substate of s supports or rejects ϕ. For lack of space, a proper discussion of these
logical responsehood relations has to be left for another occcasion.
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Definition 1 (Informative Content). info(ϕ) :=
⋃

[ϕ]+

Among the states that support a sentence ϕ, some are easier to reach than
others. Suppose for instance, that s and t are two states that support ϕ, and
that t ⊂ s. Establishing either s or t as the new common ground would be
sufficient to compliantly settle the proposal expressed by ϕ. However, it is easier
to establish s then it is to establish t, because this would require the elimination
of fewer possible worlds, i.e., it would require less information.

From this perspective, those states that support ϕ and are not contained
in any other state that supports ϕ have a special status. They are the weak-
est, least informed states supporting ϕ. We will refer to such states as the
support-alternatives for ϕ, and denote the set of all support-alternatives for ϕ
as alt+(ϕ). Similarly, we will refer to the weakest states that reject ϕ as the
reject-alternatives for ϕ, and denote the sets of all these states as alt−(ϕ). We
will sometimes refer to support-alternatives simply as alternatives.

Definition 2 (Alternatives)

– alt+(ϕ) := {s | s |=+ ϕ and there is no t supsets such that t |=+ ϕ}
– alt−(ϕ) := {s | s |=− ϕ and there is no t ⊃ s such that t |=− ϕ}
In our current setting, where we consider a propositional language based on a
finite set of atomic sentences, the set of all possible worlds is finite, and therefore
the set of all states is also finite. This means that infinite sequences of states
s0 ⊂ s1 ⊂ s2 ⊂ . . . supporting a certain sentence do not exist. As a result, every
state that supports a sentence ϕ is included in a support-alternative for ϕ, and
similarly for states that reject ϕ.

Fact 1 (Alternatives)

– Every s ∈ [ϕ]+ is contained in some α ∈ alt+(ϕ)
– Every s ∈ [ϕ]− is contained in some α ∈ alt−(ϕ)

We will rely on this fact in formulating and explaining the semantics, in particu-
lar the clause for implication, because certain notions become more transparent
when explicated in terms of alternatives. We will also show how the semantics
can be lifted to the more general setting where the set of possible worlds is
infinite and the existence of alternatives cannot be guaranteed.

3.2 Informative, Inquisitive, and Suppositional Sentences

We will say that a sentence ϕ is informative just in case (i) it has the potential to
provide information, i.e., info(ϕ) = ω, and (ii) it can be rejected, i.e., [ϕ]− = ∅.
We will say that ϕ is inquisitive just in case (i) there is at least one state that
supports ϕ, and (ii) in order to establish such a state as the new common ground
it does not suffice for other conversational participants to simply accept info(ϕ).
The latter holds if and only if info(ϕ) does not support ϕ, i.e., info(ϕ) ∈ [ϕ]+.
Finally, we will say that ϕ is suppositional just in case there is at least one
consistent state that dismisses a supposition of ϕ, which means that [ϕ]◦ = {∅}.
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Definition 3 (Informative, Inquisitive and Suppositional Sentences)

– ϕ is informative iff [ϕ]− = ∅ and info(ϕ) = ω

– ϕ is inquisitive iff [ϕ]+ = ∅ and info(ϕ) ∈ [ϕ]+

– ϕ is suppositional iff [ϕ]◦ = {∅}
If there are two or more alternatives for a sentence, then that sentence has to
be inquisitive. After all, if ϕ is not inquisitive, then info(ϕ), which amounts to⋃

[ϕ]+, supports ϕ. But this means that
⋃

[ϕ]+ is the unique alternative for ϕ,
which contradicts the assumption that there are two or more alternatives for ϕ.

Vice versa, if ϕ is inquisitive, i.e., if
⋃

[ϕ]+ ∈ [ϕ]+, then, given our assumption
that there are finitely many possible worlds, there must be at least two states
s, t ∈ [ϕ]+ such that s∪ t ∈ [ϕ]+. But then, by Fact 1, there must be at least two
support-alternatives for ϕ, one containing s, one containing t, and neither of them
containing s∪ t. So there is a straightforward connection between inquisitiveness
and the number of support-alternatives for a sentence.

Fact 2 (Alternatives and Inquisitiveness)

– ϕ is inquisitive iff alt+(ϕ) has two or more elements.

With these basic notions and facts in place, we now turn to the clauses of InqS.

3.3 InqS: The Boolean Fragment

We first consider the Boolean fragment of our language, which we denote as LB .
After considering LB , we will turn to implication. As the reader may expect,
the clause for implication will be more intricate than those for the Boolean
connectives, and several aspects of it will deserve some careful consideration.

The clauses for LB are given in Definition 4 below. After laying out the
definition, we will describe informally what each of the clauses amounts to.

Definition 4 (Atomic Sentences and Boolean Connectives)

1. s |=+ p iff s = ∅ and s ⊆ |p|
s |=− p iff s = ∅ and s ∩ |p| = ∅
s |=◦ p iff s = ∅

2. s |=+ ¬ϕ iff s |=− ϕ
s |=− ¬ϕ iff s |=+ ϕ
s |=◦ ¬ϕ iff s |=◦ ϕ

3. s |=+ ϕ∧ψ iff s |=+ ϕ and s |=+ ψ
s |=− ϕ ∧ ψ iff s |=− ϕ or s |=− ψ
s |=◦ ϕ ∧ ψ iff s |=◦ ϕ or s |=◦ ψ

4. s |=+ ϕ ∨ ψ iff s |=+ ϕ or s |=+ ψ
s |=− ϕ∨ψ iff s |=− ϕ and s |=− ψ
s |=◦ ϕ ∨ ψ iff s |=◦ ϕ or s |=◦ ψ

Atomic Sentences. A state s supports an atomic sentence p just in case s is
consistent and p is true in all worlds in s. Similarly, s rejects p just in case s
is consistent and p is false in all worlds in s. Finally, s dismisses a supposition
of p if s is inconsistent. The idea behind the latter clause is that in uttering p,
a speaker makes the trivial supposition that p may or may not be the case—a
supposition that is dismissed only by the absurd, inconsistent state.
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11 10

01 00

(a) p

11 10

01 00

(b) ¬p

11 10

01 00

(c) p ∧ q

11 10

01 00

(d) p ∨ q

11 10

01 00

(e) ?p :=p∨¬p

Fig. 1. The propositions expressed by some basic sentences.

Negation. A state s supports ¬ϕ just in case it rejects ϕ. Vice versa, it rejects
¬ϕ just in case it supports ϕ. Finally, it dismisses a supposition of ¬ϕ just in
case it dismisses a supposition of ϕ. Thus, ¬ϕ straightforwardly inherits the
suppositional content of ϕ. Notice that, as in classical logic, ¬¬ϕ ≡ ϕ for any ϕ.

Conjunction. A state s supports ϕ ∧ ψ just in case it supports both ϕ and ψ,
and it rejects ϕ ∧ ψ just in case it rejects either ϕ or ψ. Finally, s dismisses a
supposition of ϕ ∧ ψ just in case it dismisses a supposition of ϕ or dismisses
a supposition of ψ. Thus, ϕ ∧ ψ inherits the suppositional content of ϕ and ψ in
a straightforward, cumulative way.

Disjunction. A state s supports ϕ ∨ ψ just in case it supports either ϕ or ψ,
and it rejects ϕ ∨ ψ just in case it rejects both ϕ and ψ. Finally, s dismisses a
supposition of ϕ ∨ ψ just in case it dismisses a supposition of ϕ or dismisses a
supposition of ψ. Thus, again, ϕ ∨ ψ inherits the suppositional content of ϕ and
ψ in a straightforward, cumulative way.

Propositions expressed by sentences in LB can be visualized in a perspicuous
way. This is done in Fig. 1 for some simple sentences. In this figure, as before, 11
is a world where both p and q are true, 10 a world where p is true and q is false,
etcetera. The support- and reject-alternatives for each sentence are depicted with
solid and dashed borders, respectively. Notice in particular that Fig. 1(d) and
Fig. 1(e) immediately reveal that p∨ q and ?p are inquisitive, since there are two
support-alternatives for these sentences.

Some Logical Properties. The Boolean connectives satisfy De Morgan’s laws:

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)
ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

Moreover, it can be shown that for every sentence ϕ ∈ LB , the informative
content of ϕ in InqS, i.e.,

⋃
[ϕ]+, coincides precisely with the proposition that

ϕ expresses in classical propositional logic (CPL). So, as far as LB is concerned,
InqS is a conservative refinement of classical logic. That is, the two fully agree on
the informative content of every sentence in the language; only, while classical
logic identifies the meaning of a sentence with its informative content, InqS has
a more fine-grained notion of meaning.



Towards a Suppositional Inquisitive Semantics 147

Fact 3 (Conservative Refinement of CPL). For any ϕ ∈ LB, info(ϕ) = |ϕ|
The inconsistent state, ∅, never supports or rejects a sentence in LB , but always
suppositionally dismisses it.

Fact 4 (Inconsistency). For any ϕ ∈ LB: ∅ |=+ ϕ, ∅ |=− ϕ, and ∅ |=◦ ϕ.

Moreover, the inconsistent state is the only state that suppositionally dismisses
any sentence in LB . In other words, no sentence in LB is suppositional.

Fact 5 (No Suppositionality). For any ϕ ∈ LB, [ϕ]◦ = {∅}.
Recall that in InqB support is persistent, i.e., information grows never leads to
retraction of support. It follows from Fact 4 that in InqS support and rejection
are not fully persistent: any state that supports or rejects a sentence ϕ has a
substate, namely ∅, which no longer supports/rejects ϕ. However, in the Boolean
fragment of InqS, support and rejection are persistent modulo inconsistency.
That is, if s supports ϕ then any consistent substate of s still supports ϕ. And
similarly for rejection.

Fact 6 (Persistence Modulo Inconsistency). For any ϕ ∈ LB, � ∈
{+,−}, if s |=� ϕ and s ⊇ t = ∅, then t |=� ϕ.

A state never supports and rejects a sentence at the same time.

Fact 7 (Support and Rejection are Mutually Exclusive). For any ϕ ∈
LB, [ϕ]+ ∩ [ϕ]− = ∅.
Finally, it follows from Facts 6 and 7 that in the Boolean fragment support and
rejection are incompatible in a stronger sense as well: a state that supports a
sentence ϕ can never have any overlap with a state that rejects ϕ.

Fact 8 (Support and Rejection do not Overlap). For any ϕ ∈ LB, if
s |=+ ϕ and t |=− ϕ, then s ∩ t = ∅.

3.4 Implication

We now turn to implication, which typically introduces non-trivial suppositional
content. The initial idea is that, for a state s to either support or reject an
implication ϕ → ψ, it is a necessary requirement that the antecedent ϕ be
supposable in s. If this is not the case, then s suppositionally dismisses the
implication, and does not support or reject it.

The key question, then, is what it means exactly for ϕ to be supposable in s.
To answer this question, we will consider a number of concrete examples. We
will start with the simplest case, and gradually consider more complex ones. As
we proceed, our notion of supposability and the semantics for implication that
is defined in terms of it will become more and more refined. Consider first an
implication with an atomic antecedent and an atomic consequent:
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(7) p → r

It would be natural to say that p is supposable in a state s iff the single support-
alternative for p, |p|, is consistent with s, i.e., s ∩ |p| = ∅. Furthermore, it would
be natural to say that if this condition is met, s supports the implication iff
s ∩ |p| supports r, and s rejects the implication iff s ∩ |p| rejects r. However,
this characterization of supposability only applies if there is a unique support-
alternative for the antecedent. To see how it may be generalized, let us consider
an example in which there are two support-alternatives for the antecedent:

(8) (p ∨ q) → r

To deal with such cases, as well as the simpler cases where there is a single
support-alternative for the antecedent, it seems reasonable to say that, in general,
the antecedent is supposable in s iff every support-alternative for it is consistent
with s:

(9) ϕ is supposable in s, notation s � ϕ, iff ∀α ∈ alt+(ϕ) : s ∩ α = ∅
With this characterization of supposability in place, we may formulate the
clauses for implication as follows:

s |=+ ϕ → ψ iff s � ϕ and ∀α ∈ alt+(ϕ): s ∩ α |=+ ψ

s |=− ϕ → ψ iff s � ϕ and ∃α ∈ alt+(ϕ): s ∩ α |=− ψ

s |=◦ ϕ → ψ iff s � ϕ

However, this formulation of the clauses is problematic in several ways. One
problem is that the given conditions for rejecting an implication are too stringent.
To see this, consider the following state:

(10) s := |¬p ∧ (q → ¬r)|
This state is inconsistent with one of the support-alternatives for the antecedent
of (8), namely |p|. However, it is consistent with the other support-alternative,
|q|, and if we intersect it with this alternative we get at the state |¬p ∧ ¬r|,
which rejects the consequent of the implication, r. So, on the one hand, not
every support-alternative for the antecedent is consistent with s, and we want
our semantics to capture this by characterizing s as dismissing a supposition of
the implication; on the other hand, however, one of the support-alternatives for
the antecedent is consistent with s, and restricting s to this alternative leads
to rejection of the consequent. We want our semantics to capture this as well,
by characterizing s as a state that rejects the implication as a whole (besides
dismissing a supposition of it).

The general upshot of this example is that the idea that we started out with,
namely that supposability of the antecedent as a whole is a necessary requirement
for a state to support or reject an implication, is not exactly on the right track.
In particular, it is too stringent in the case of rejection.
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Rather than considering the supposability of the antecedent as a whole, it
seems more suitable to consider the supposability of each support-alternative for
the antecedent separately. Let us say, for now, that an alternative α is supposable
in a state s just in case the two are consistent with each other:

(11) An alternative α is supposable in a state s, notation s�α, iff s∩α = ∅.

Then we arrive at the following revised formulation of the clauses for implication:

s |=+ ϕ → ψ iff ∀α ∈ alt[ϕ]+: s � α and s ∩ α |=+ ψ

s |=− ϕ → ψ iff ∃α ∈ alt[ϕ]+: s � α and s ∩ α |=− ψ

s |=◦ ϕ → ψ iff ∃α ∈ alt[ϕ]+: s � α

This formulation, however, still needs further refinement. First, consider a case
in which there are no support-alternatives for the antecedent at all:

(12) (p ∧ ¬p) → r

According to the clauses above, this implication is trivially supported by any
state, because the clause for support quantifies universally over the support-
alternatives for the antecedent, which in this case do not exist. On the other
hand, according to the given clauses, there is no state that dismisses a supposi-
tion of the implication, because this requires inconsistency with some support-
alternative for the antecedent, of which there are none. We want exactly the
oppositive result: no state should support this implication, and every state should
dismiss a supposition of it. Thus, the clauses should be adapted: support should
require a non-empty set of support-alternatives for the antecedent, while dis-
missal of a supposition should occur if this set is empty. This leads us to the
formulation below. For uniformity, we have adapted the rejection clause as well,
although this is strictly speaking redundant; the new, redundant part of the
clause is displayed in gray.

s |=+ ϕ → ψ iff alt+(ϕ) = ∅ and ∀α ∈ alt+(ϕ): s � α and s ∩ α |=+ ψ

s |=− ϕ → ψ iff alt+(ϕ) = ∅ and ∃α ∈ alt+(ϕ): s � α and s ∩ α |=− ψ

s |=◦ ϕ → ψ iff alt+(ϕ) = ∅ or ∃α ∈ alt+(ϕ): s � α

This formulation is appropriate as long as ϕ and ψ are non-suppositional, i.e., as
long as they do not contain any implications themselves. However, to deal with
nested implications, some further refinements are needed.

First consider a case where the consequent is suppositional, which will be
relatively easy to accommodate.

(13) p → (q → r)

Consider the following state:

(14) s := |p → ¬q|
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The semantics should predict that this state dismisses a supposition of (13),
because if we restrict it to the unique support-alternative for the antecedent,
|p|, we arrive at the state |¬q|, and this state dismisses a supposition of the
consequent, q → r. However, this is not captured by the clause for dismissal
given above, which requires that there is a support-alternative for the antecedent
that is inconsistent with s. This is clearly not the case here. So the clause needs
to be adapted, and there is a natural way to do so: in order for s to dismiss
a supposition of ϕ → ψ it should be the case that alt+(ϕ) is empty, or that
it contains an alternative that is not supposable in s, or that it contains an
alternative α which is such that s∩α dismisses a supposition of the consequent.
Notice that, w.r.t. the previous formulation, the first two conditions are old, and
the third one is newly added. Moreover, notice that whenever the consequent
of the implication is non-suppositional, the second and the third requirement
coincide, demanding that s ∩ α be consistent. Leaving the support and reject
clauses unchanged, we arrive at the following formulation:

s |=+ ϕ → ψ iff alt+(ϕ) = ∅ and ∀α ∈ alt+(ϕ): s � α and s ∩ α |=+ ψ

s |=− ϕ → ψ iff alt+(ϕ) = ∅ and ∃α ∈ alt+(ϕ): s � α and s ∩ α |=− ψ

s |=◦ ϕ → ψ iff alt+(ϕ) = ∅ or ∃α ∈ alt+(ϕ): s � α or s ∩ α |=◦ ψ

There is one more amendment to make, in order to deal with cases where the
antecedent of the implication is itself suppositional. We will do this in two steps,
again first considering the simplest case and then a more complex one. Consider
first:

(15) (p → q) → r

Suppose that our state of evaluation is the following:

(16) s := |¬p ∧ r|
According to the clauses as formulated above, this state supports the implication
in (15), because there is a single support-alternative for the antecedent, α := |p →
q|, which is consistent with s, and the intersection of s with α amounts to s itself,
which supports the consequent, r. Moreover, the clauses do not characterize s
as a state that dismisses a supposition of (15), because s ∩ α is consistent and
does not dismiss a supposition of the consequent.

Again, we want precisely the opposite result: s should be characterized as
dismissing a supposition of the implication, and not as supporting it. The culprit
for this is our notion of supposability of support-alternatives. According to (11),
a support-alternative α for a sentence ϕ is supposable in a state s iff s ∩ α = ∅.
However, even if s ∩ α = ∅, it may be the case that s ∩ α no longer supports ϕ.
This is indeed the case in the example above where α := |p → q| is the unique
support-alternative for the antecedent, p → q, and s ∩ α no longer supports
p → q. For this reason, α should not be characterized as supposable in s.

Our notion of supposability should be made sensitive to this. That is, we
should not just require that s ∩ α is consistent, but rather that in going from α
to s ∩ α, support of ϕ is preserved:
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(17) A support-alternative α for a sentence ϕ is supposable in a state s,
notation s � α, iff s ∩ α |=+ ϕ.

With this refined notion of supposability in place, the clauses for implication can
remain as they were formulated above. Examples like (15), with a suppositional,
but non-inquisitive antecedent, are now suitably dealt with.

The final, most complex case to consider is one in which the antecedent is
both suppositional and inquisitive, which means that it has multiple support-
alternatives. Take the following example:

(18) ((p → q) ∨ l) → r

Notice that the antecedent is a disjunction, whose first disjunct is suppositional.
Consider a state that dismisses the first disjunct, but supports the second, and
moreover, supports the consequent of the implication:

(19) s := |¬p ∧ l ∧ r|
According to the clauses as formulated above, this state supports the implication
in (18). Let us see why this is the case. First, there are two support-alternatives
for the antecedent, |p → q| and |l|. Intersecting s with either of these alternatives
simply yields s, which supports the antecedent, so both support-alternatives for
the antecedent are supposable. Moreover, the intersection of s with either of the
support-alternatives for the antecedent also supports the consequent, r. There-
fore, s supports the implication as a whole as well.

The clauses also characterize s as a state that does not dismiss any supposi-
tion of the implication in (18). This is because the intersection of s with either
of the two support-alternatives for the antecedent is just s, and as we already
saw, s supports the antecedent.

These are not the right results: we want the semantics to characterize s as a
state that dismisses a supposition of the implication, and does not support it.
The culprit for this is again our notion of supposability of support-alternatives.
The idea was that a support-alternative α for ϕ is supposable in s iff in going
from α to s∩α, support of ϕ is preserved. Formally, we require that s∩α should
still support ϕ.

But now look at the example again. There are two support-alternatives for
the antecedent, corresponding to the two disjuncts, |p → q| and |l|. Let us
focus on the first. Intersecting s with this alternative simply yields s, which
supports the antecedent of the implication. Crucially, however, this is because
it supports the second disjunct, l. It does not support the first disjunct, the one
that corresponds to the support-alternative that we are considering. And, upon
closer examination, there is a clear sense in which support is not fully preserved
in going from |p → q| to s. Namely, there are states between |p → q| and s, such
as |¬p|, which do not support the antecedent. Only when we further strengthen
these states in such a way that they come to support the second disjunct, do
they come to support the antecedent as a whole. From this perspective, it is not
right to say that support is preserved in going from |p → q| to s. It is true that
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we have support at s, but only after it was lost somewhere along the way. These
considerations lead to the following, definitive, characterization of supposability
of support-alternatives.5

Definition 5 (Supposability of Support-Alternatives). A support–
alternative α for a sentence ϕ is supposable in a state s, notation s � α, iff
for every state t between α and s ∩ α, i.e., every t such that α ⊇ t ⊇ (s ∩ α), we
have that t |=+ ϕ.

With this refined notion of supposability in place, the clauses for implication can
remain as formulated above. We restate them here in an official definition.6

Definition 6 (Implication)

s |=+ ϕ → ψ iff alt+(ϕ) = ∅ and ∀α ∈ alt+(ϕ): s � α and s ∩ α |=+ ψ

s |=− ϕ → ψ iff alt+(ϕ) = ∅ and ∃α ∈ alt+(ϕ): s � α and s ∩ α ! |=− ψ

s |=◦ ϕ → ψ iff alt+(ϕ) = ∅ or ∃α ∈ alt+(ϕ): s � α or s ∩ α |=◦ ψ

This completes our suppositional semantics for the full propositional language L.

Depicting Propositions. The propositions expressed by simple conditional
sentences can again be visualized. Figure 2 does this for the most basic case,
p → q. Figure 2(a) depicts the maximal state supporting p → q, i.e., |p → q|,
as well as its maximal substate that no longer supports p → q, i.e., |¬p|. Any

5 This notion of supposability preserves a key property of the simple notion of suppos-
ability in terms of consistency, namely that for every support-alternative α of any
sentence ϕ, there is a unique ‘turning point’ state s, such that α is supposable in
any superstate of s and no longer supposable in any substate of s. For this to obtain,
it is crucial that the notion requires support to be preserved in all states between α
and s ∩ α, and not just in s ∩ α.

6 Recall from our discussion in Sect. 3.1 that the fact that we are considering a propo-
sitional language based on a finite set of atomic sentences is crucial in ensuring that
every state that supports a sentence is contained in an alternative for that sentence,
which in turn justifies our formulation of the clauses for implication in terms of
alternatives. However, this cannot always be ensured. For instance, if we consider a
first-order language with an infinite domain of interpretation, the existence of alter-
natives can no longer be guaranteed (Ciardelli 2009). Fortunately, there is a way
to formulate the clauses for implication that does not make reference to alterna-
tives, and which in the current setting is equivalent to the clauses as formulated in
Definition. 6:

s |=+ ϕ → ψ iff [ϕ]+ �= ∅ and ∀t ∈ [ϕ]+∃u ⊇ t ∈ [ϕ]+: s � u and s ∩ u |=+ ψ

s |=− ϕ → ψ iff [ϕ]+ �= ∅ and ∃t ∈ [ϕ]+∀u ⊇ t ∈ [ϕ]+: s � u and s ∩ u |=− ψ

s |=◦ ϕ → ψ iff [ϕ]+ = ∅ or ∃t ∈ [ϕ]+∀u ⊇ t ∈ [ϕ]+: s � u or s ∩ u |=◦ ψ

.
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Fig. 2. States that support, reject, and dismiss a supposition of p → q.

substate of |p → q| that is not completely contained in |¬p| still supports p → q.
Similarly, Fig. 2(b) depicts the maximal state rejecting p → q, i.e., |p → ¬q|,
as well as its maximal substate that no longer rejects p → q, i.e., |¬p|. Finally,
Fig. 2(c) depicts the maximal state that dismisses a supposition of p → q, i.e.,
again |¬p|.
Some Logical Properties. Recall again that in InqB support is fully persistent,
and that in the Boolean fragment of InqS support and reject are persistent
modulo inconsistency (Fact 6). In the full fragment of InqS this feature is lost.
For instance, the information state |p → q| supports the sentence p → q, but
the state |¬p|, which is a substate of |p → q|, does not support p → q; rather,
it dismisses a supposition of it. Similarly for rejection: |p → ¬q| rejects p → q,
but |¬p|, which is a substate of |p → ¬q|, does not reject p → q. Instead, as
noted above, |¬p| dismisses a supposition of the implication. Thus, unlike in
InqB, information growth can lead to suppositional dismissal, and thereby also
to retraction of support or rejection, even if consistency is preserved.

However, a weaker form of persistency is still maintained in InqS, namely
persistency modulo suppositional dismissal. That is, if a state s supports a sen-
tence ϕ, then any more informed state t ⊆ s either still supports ϕ, or dismisses
a supposition of ϕ. And similarly for rejection. Finally, dismissal of a supposition
is fully persistent. If a state s dismisses a supposition of ϕ, then so does any more
informed state t ⊆ s. Information growth cannot lead to retraction of dismissal.

Fact 9 (Persistence Modulo Suppositional Dismissal). For any ϕ, � ∈
{+,−, ◦}, if s |=� ϕ and t ⊆ s, then t |=� ϕ or t |=◦ ϕ.

Fact 4 extends from the Boolean fragment of InqS to the full system: the incon-
sistent state never supports or rejects a sentence but always suppositionally dis-
misses it. The same goes for Fact 7: a state never supports and rejects a sentence
at the same time. However, the full system does not exclude the possibility that
a state either supports or rejects a sentence and at the same time also dismisses
a supposition of it. To see that this option should indeed be left open, consider
the following examples:

(20) a. Maria will go if Peter goes, or if Frank goes. (p → r) ∨ (q → r)
b. Well, Peter isn’t going, but indeed,

if Frank goes, Maria will go as well. ¬p ∧ (q → r)
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(21) a. Maria will go if Peter goes, and if Frank goes. (p → r) ∧ (q → r)
b. Well no, Peter isn’t going, and if Frank goes,

Maria definitely won’t. ¬p ∧ (q → ¬r)

The response in (20b) supports (20a), but at the same time it also dismisses a
supposition of it. Similarly, the response in (21b) rejects (21a), but again, it also
dismisses a supposition of it.

Facts 4 and 9 together imply that the three components of a proposition in
InqS jointly form a non-empty set of states S that is downward closed, i.e., for
any s ∈ S and t ⊆ s we have that t ∈ S as well.

Fact 10. For any ϕ, [ϕ]+ ∪ [ϕ]− ∪ [ϕ]◦ is non-empty and downward closed.

In InqB, propositions are defined precisely as non-empty, downward closed sets
of states. So, while InqS offers a more fine-grained notion of meaning than InqB
in that it distinguishes three different meaning components, if we put these
three meaning components together, we always obtain the same kind of semantic
object that we had already in InqB. Thus, InqS is a refinement of InqB, but at
the same time it retains one of its core features.

We saw in Sect. 3.3 that the Boolean fragment of InqS preserves many cen-
tral features of CPL. As soon as implication is taken into consideration, however,
InqS diverges more radically from CPL. In particular, Facts 3 (conservative refine-
ment), 5 (no suppositionality), and 8 (no overlap) no longer hold, which can all be
shown with a single example: ¬(p → q). We have that info(¬(p → q)) = |p → ¬q|
which differs from the proposition expressed by ¬(p → q) in CPL. Furthermore,
¬(p → q) is suppositional, and it has supporting and rejecting states that over-
lap, for instance |p → ¬q| and |p → q|, respectively.

One ‘classical’ property that InqS does preserve, even when implication is
taken into consideration, is that whenever a state s supports a sentence ϕ, then
no substate t ⊆ s rejects ϕ, and vice versa, whenever s rejects ϕ, no substate
t ⊆ s supports ϕ. In the terminology of Veltman (1985), this means that every
sentence in our language is stable.

Fact 11 (Stability). For any ϕ ∈ L and any state s:

– If s supports ϕ then no t ⊆ s rejects ϕ
– If s rejects ϕ then no t ⊆ s supports ϕ

Veltman introduced the notion of stability in his work on data semantics, which,
like InqS, is concerned in particular with conditionals and epistemic modals.
Veltman emphasizes that in data semantics, both conditionals and epistemic
modals are typically unstable, unlike sentences that do not contain modals or
conditionals. In InqS, it is still the case that sentences involving epistemic modals
are typically unstable (see Aher 2014). However, all sentences in the propositional
language considered here, including conditionals, are stable.

Finally, recall that we defined ?ϕ as an abbreviation of ϕ∨¬ϕ. Having spelled
out the clauses for all the basic connectives in our system, we can now derive
the interpretation of ?ϕ as well. First, a state supports ?ϕ iff it supports either
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ϕ or ¬ϕ. So [?ϕ]+ = [ϕ]+ ∪ [¬ϕ]+ = [ϕ]+ ∪ [ϕ]−. Second, a state rejects ?ϕ
iff it rejects both ϕ and ¬ϕ. But to reject ¬ϕ is to support ϕ. Thus, in order
to reject ?ϕ, a state would have to support ϕ and reject ϕ at the same time,
which is impossible. So, for any ϕ, [?ϕ]− will be empty. Finally, a state dismisses
a supposition of ?ϕ iff it dismisses a supposition of ϕ or of ¬ϕ, and the latter
occurs just in case the state dimisses a supposition of ϕ itself. So, [?ϕ]◦ = [ϕ]◦.

Fact 12. For any ϕ, [?ϕ] = 〈[ϕ]+ ∪ [ϕ]−, ∅, [ϕ]◦〉
Now let us return to our initial motivating examples, repeated below:

(22) a. If Pete plays the piano, will Susan sing? p → ?q
b. Yes, if Pete plays the piano, Susan will sing. p → q
c. No, if Pete plays the piano, Susan won’t sing. p → ¬q
d. Pete won’t play the piano. ¬p

As desired, our semantics predicts that (22b) and (22c) support (22a); that (22b)
and (22c) reject each other; and that (22d) neither supports nor rejects any of
(22a), (22b), and (22c), but dismisses a supposition of all three of them.7 These
examples are iconic for the issues that we set out to address. But, as we saw
along the way, the semantics deals with many more complex cases as well.

4 Conclusion

Our starting point in this paper was the general perspective on meaning that
is taken in inquisitive semantics, which is that sentences express proposals to
update the common ground of the conversation in one or more ways. There are
several ways in which a conversational participant may respond to such propos-
als, depending on her information state. The most basic inquisitive semantics
framework, InqB, characterizes which states support a given proposal. Radi-
cal inquisitive semantics, InqR, also characterizes independently which states
reject a given proposal. The suppositional inquisitive semantics developed in the
present paper, InqS, further distinguishes states that dismiss a supposition of
a given proposal. We have thus arrived at a more and more fine-grained for-
mal characterization of proposals, and thereby at a more and more fine-grained
characterization of meaning. We have argued that this is necessary for a bet-
ter account of information exchange through conversation, in particular when
the exchange involves conditional questions and assertions. Elsewhere, we argue
that the framework developed here also offers new insights into the semantics of
epistemic and deontic modals (Aher 2014).

7 Sentence (22d) not only dismisses a supposition of the other three sentences, but it
suppositionally dismisses them, given the way this notion was defined in footnote 4.
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Abstract. We introduce three relations between models of Peano Arith-
metic (PA), each of which is characterized as an arithmetical accessibility
relation. A relation R is said to be an arithmetical accessibility relation
if for any model M of PA, M � Prπ(ϕ) iff M′ � ϕ for all M′ with
M R M′, where Prπ(x) is an intensionally correct provability predi-
cate of PA. The existence of arithmetical accessibility relations yields a
new perspective on the arithmetical completeness of GL. We show that
any finite Kripke model for the provability logic GL is bisimilar to some
“arithmetical” Kripke model whose domain consists of models of PA and
whose accessibility relation is an arithmetical accessibility relation. This
yields a new interpretation of the modal operators in the context of PA:
an arithmetical assertion ϕ is consistent (possible, ♦ϕ) if it holds in some
arithmetically accessible model, and provable (necessary, �ϕ) if it holds
in all arithmetically accessible models.

Keywords: Arithmetic · Modal logic · Provability logic · Internal
models

1 Introduction

The modal system GL bears a special relation to Peano Arithmetic1(PA). Inter-
preting the modality � as an (intensionally correct) provability predicate of
PA, GL captures exactly what is provable in PA, in propositional terms, about
provability in itself. The fascinating proof is due to Robert Solovay.

The goal of this article is to reveal a new aspect of the relation between GL
and PA. We do this by constructing a big arithmetical Kripke model whose nodes
are models of PA. The accessibility relation is chosen so as to guarantee that for
any world M, the (arithmetical) sentence ϕ is in the extension of the provability
predicate (of PA) in M if and only if ϕ holds in all worlds accessible from M. In
other words, it does not matter whether we look at M as a model of PA, or as a
world in the Kripke model (seeing the provability predicate as a modality). We
show that any Kripke model for GL is bisimilar to some big arithmetical Kripke
model of this kind.
1 Here, PA can be replaced by any recursively enumerable Σ1-sound theory containing

Elementary Arithmetic (EA).
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In order to construct such an arithmetical Kripke frame, we need to find
a suitable accessibility relation; we call such a relation an arithmetical accessi-
bility relation. In order to appreciate the existence of arithmetical accessibility
relations, we shall make a detour to set theory. In [4], Hamkins presents a (set–
theoretic) forcing interpretation of modal logic. In this context, ♦ϕ is interpreted
as: “ϕ holds in some forcing extension”, and �ϕ as: “ϕ holds in all forcing exten-
sions” (where ϕ is a statement in the language of set theory). Hamkins and Löwe
[5] prove that if ZFC is consistent, then the principles of forcing provable in ZFC
are exactly those derivable in the modal system S4.2.

Although Hamkins and Löwe say that they want to do for forceability what
Solovay did for provability, the situation is not entirely symmetric. Forcing is a
relation between models of set theory – a ground model has some access to the
truths of its forcing extension –, and hence it is natural to view it as an accessi-
bility relation in a Kripke model. The interpretation of the modal operators in
set theory is thereby in tune with their usual modal logical meanings: ♦ϕ means
that ϕ holds in some successor (i.e. forcing extension), and �ϕ that ϕ holds in
all successors (forcing extensions). As a result, one can imagine the collection of
all models of set theory, related by forcing, as an enormous Kripke model, where
the valuation is given by first–order satisfiability.

Provability, on the other hand, is not a relation between models of PA. Also,
whereas the usual interpretation of �ϕ in modal logic involves universal quantifi-
cation (over all accessible worlds), the interpretation of �ϕ in PA is an existential
sentence: there exists a proof of ϕ. Similarly, in the context of PA, the interpre-
tation of ♦ϕ switches from existential to universal: ϕ is consistent, i.e. all proofs
are not proofs of ¬ϕ. It is therefore natural to ask whether there is a relation
between models of PA that is the analogue of forcing in the context of ZFC.

We shall answer this question positively, by providing three examples of arith-
metical accessibility relations. This allows one to view the collection of all mod-
els of PA, related by such an arithmetical accessibility relation, as a big Kripke
model. We also get a new interpretation of the modal operators in the context of
PA. The traditional meaning of �ϕ – “there exists a proof of ϕ” – is equivalent
to an interpretation of �ϕ as: “ϕ holds in all arithmetically accessible models”.
Similarly, the traditional meaning of ♦ϕ – “ϕ is consistent” – is equivalent to an
interpretation of ♦ϕ as:“ϕ holds in some arithmetically accessible model”.

An important precursor of our work is [11], where several examples of arith-
metical accessibility relations are given. While some basic ideas were already
present there, our approach is slightly different. Furthermore, many details which
were only sketched in [11] are subject to a more thorough treatment here.

The next section contains the preliminaries. Our examples of arithmetical
accessibility relations are introduced in Sects. 3 and 4 establishes that any finite
Kripke model for GL is bisimilar to some arithmetical Kripke model. The arith-
metical completeness of GL is an easy consequence2 of this. Finally, in Sect. 5 we
2 Our proof of Solovay’s Theorem is not “new”– the construction of the bisimulation

makes crucial use of the most important ingredients of the original proof. Solovay’s
Theorem will thus remain among the important theorems in mathematical logic
which have “essentially” only one proof (see [3]).
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shall make some general observations concerning the structure of the arithmeti-
cal Kripke frames.

2 Preliminaries

This section sketches the basic notions and preliminaries. Section 2.1 deals with
arithmetic, Sect. 2.2 with modal logic, in particular the system GL, and Sect. 2.3
introduces the notion of an internal model.

2.1 Arithmetic

We work in a first–order language with ¬,→ and ∀ as primitive connectives; the
connectives ∧, ∨, ↔ and ∃ are assumed to be defined in the usual way. We assume
a Hilbert–style axiomatization of first–order logic, with modus ponens as the only
rule of inference. Our official signature Σ of arithmetic is relational; it includes:

– a binary relation symbol E (equality)
– a unary relation symbol Z (being equal to zero)
– a binary relation symbol S (Sxy being interpreted as: x + 1 = y)
– a ternary relation symbol A (Axyz being interpreted as: x + y = z)
– a ternary relation symbol M (Mxyz being interpreted as: x × y = z).

We also use Σ to refer to the language of arithmetic, i.e. the first–order language
based on the signature of arithmetic. We shall use lower case Greek letters for
the sentences and formulas of Σ.

The theory of Peano Arithmetic (PA) is a first–order theory in the language
of arithmetic. It contains axioms stating that E is a congruence relation, the
basic facts about the relations Z, S, A and M (for example that Zx implies ¬Syx
for all y), as well as a functionality axiom – with respect to E – for each of the
above relations. Finally, the axioms of PA include induction for all formulas in
the language Σ of arithmetic.

All first–order models considered in this article are models of PA, or expan-
sions of models of PA. From now on, the word “model” will refer to such a model.
We use ΣM to refer to the signature of M. If ΣM = ΣM′ , we write M ≡ M′

to mean that M and M′ are elementarily equivalent, i.e. that for every sentence
ϕ of ΣM, M � ϕ ⇔ M′ � ϕ. We write M ∼= M′ if M and M′ are isomorphic.
If ϕ is a formula whose free variables are among x0, . . . , xn, and m0, . . . ,mk is a
sequence of elements of M, with n ≤ k, we write M � ϕ[m1, . . . ,mk] to mean
that M satisfies ϕ when xj is interpreted as mj .

In practice, we shall often speak of the formulas of Σ as containing terms built
up from the constant symbol 0, a unary function symbol S, and binary function
symbols + and ×. Such formulas can be transformed into proper formulas of
Σ by the well–known term–unwinding algorithm3. We define for each natural
number n a term n of our unofficial language by letting 0 = 0, and n + 1 = Sn.
We shall often also write n instead of n, and x = y instead of Exy.
3 The details of the algorithm are worked out in [10].
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We assume as given some standard coding of the syntactical objects of Σ. If
ϕ is a formula, we write �ϕ� for the code of ϕ, and similarly for terms. We shall
often identify a formula with its code, thus writing for example ϕ(ψ) instead of
ϕ(�ψ�).

We also assume as given intensionally correct4 formulas of Σ that express
relations between syntactical objects (of Σ and its expansions) and operations
on them. We use self–explanatory notation for such formulas; for example, the
formula form expresses the property of being (the code of) a formula, and the for-
mula var the property of being (the code of) a variable. We write ∀ϕ ∈ formα(ϕ)
instead of ∀x (form(x) → α(x)), and similarly for other syntactical objects such
as variables or sentences.

Throughout this article, λ denotes a formula that expresses the property of
being an axiom of first–order logic, and π denotes a formula that expresses the
property of being an axiom of PA. Both λ and π can be taken to be Δ1. Given
λ and π, the proof predicate Prfπ of PA is constructed in the usual way, and is
thus an intensionally correct representation of the relation

{(n, p) | p codes a PA-proof of the formula with code n} . (1)

The provability predicate Prπ is obtained by letting: Prπ(x) := ∃y Prfπ(x, y). We
shall often omit the subscript, writing simply Pr for Prπ. We write Con(ϕ) for
the sentence ¬Pr(¬ϕ), and Con for Con(). The following hold:

1. �PA ϕ ⇒ �PA Pr(ϕ)
2. �PA ∀ϕ,ψ ∈ form (Pr(impl(ϕ,ψ)) → (Pr(ϕ) → Pr(ψ)))
3. �PA ∀ϕ ∈ form (Pr(ϕ) → Pr(Pr(ϕ))).

In 2, impl represents the function computing the code of ϕ → ψ, given as input
the codes of ϕ and ψ. Item 1, together with the versions of 2 and 3 where
the universal quantifiers are only required to range over the codes of standard
sentences, are referred to as the Hilbert–Bernays–Löb derivability conditions.

The following theorem (Theorem 4.6.v in [2]) states that inside PA, properties
of theorems of PA can be proven by induction on the complexity of PA–proofs.

Theorem 1. Let α be a formula of Σ. Then

�PA ∀ϕ ∈ form [(π(ϕ) → α(ϕ)) ∧ (λ(ϕ) → α(ϕ))]
∧ ∀ϕ,ψ ∈ form [α(ϕ) ∧ α(impl(ϕ,ψ)) → α(ψ)]

→ ∀ϕ ∈ form (Pr(ϕ) → α(ϕ)).

4 By this, we mean that the definitions of these relations and operations in PA mimic
the corresponding “informal” recursive definitions, and that the relevant recursion
equations are provable in PA. In contrast, for a formula to be extensionally correct,
it is only required to have the right extension in the standard model, or in other
words to behave as intended with respect to the codes of standard sentences and
terms. The concept of extensional correctness is found in the literature under various
names, for example binumerability [2,7] or representability [1]. There exist formulas
which are extensionally correct with respect to a property but fail to express this
property in an intensionally correct way – see p. 68 of [2] for an example.
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Remark 1. The proof uses the induction axiom for the formula α. When working
in an expansion M of a model of PA, Theorem 1 can be applied with a formula
α of the signature ΣM given that induction holds in M for α.

2.2 Modal Logic

We denote by L� the language of propositional modal logic. We use upper case
Latin letters for the formulas of L�.

Definition 1 (Kripke Model). A Kripke frame is a tuple 〈W,R〉 with W �= ∅
and R ⊆ W × W . A Kripke model is a triple M = 〈W,R,�〉, where 〈W,R〉 is a
Kripke frame, and � is a forcing relation on W satisfying the usual clauses for
the connectives, and w � �A if for all y with wRy, y � A.

As usual, we use ♦A as an abbreviation for ¬�¬A. We write 〈W,R〉 � A in case
for all models 〈W,R,�〉 and for all w ∈ W , w � A.

Definition 2 (Bismulation). Let M = 〈W,R, V 〉 and M ′ = 〈W ′, R′, V ′〉 be
Kripke models. A binary relation Z ⊆ W ×W ′ is a bisimulation between M and
M ′ if the following conditions are satisfied:

– (at) If wZw′, then w and w′ satisfy the same propositional letters
– (back) If wZw′ and wRv, then there exists v′ in M ′ with w′R′v′ and vZv′

– (forth) If wZw′ and w′R′v′, then there exists v in M with wRv and vZv′.

When Z is a bisimulation between M and M ′, and wZw′, we say that w and w′

are bisimilar. The following theorem states that satisfiability of modal formulas
is invariant under bisimulations.

Theorem 2. Let M and M ′ be Kripke models, and let w,w′ be nodes of M and
M ′ respectively. If w is bisimilar to w′, then for every modal formula A, we have
that M,w � A iff M ′, w′ � A.

We now introduce the modal system GL, named after Gödel and Löb, and also
known as provability logic.

Definition 3 (Provability Logic GL). The axioms of GL are all tautologies of
propositional logic, and

1. �(A → B) → (�A → �B)
2. �(�A → A) → �A.

The rules of GL are modus ponens, and necessitation: �GL A ⇒ �GL �A.

In other words, GL is K plus Löb’s axiom �(�A → A) → �A. GL is known to
be sound and complete with respect to transitive irreflexive finite trees.

Theorem 3 (Modal Completeness of GL ). Let K be the class of frames that
are transitive irreflexive finite trees. Then �GL A ⇔ ∀F [F ∈ K ⇒ F � A].
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The notion of an arithmetical realization below will be used to translate formulas
of L� to sentences of the language of arithmetic.

Definition 4 (Arithmetical Realization). A realization ∗ is a function from
the propositional letters of L� to sentences of Σ. The domain of ∗ is extended
to all L�–formulas by requiring:

1. (⊥)∗ = ⊥
2. (A → B)∗ = A∗ → B∗

3. (�A)∗ := Pr(�A∗�).

Definition 5 (Provability Logic). A modal formula A is a provability prin-
ciple of PA if for all realizations ∗, �PA A∗. The provability logic of PA, PrL(PA),
is the set of all provability principles of PA, or a logic that generates it.

The following theorem states that GL is arithmetically sound and complete, i.e.
it is the provability logic of PA.

Theorem 4. PrL(PA) = GL.

Proof Sketch. For the direction GL ⊆ PrL(PA) (arithmetical soundness), one
has to check that the axioms of GL are provable in PA under all realizations.
This follows from the Hilbert–Bernays–Löb derivability conditions introduced in
Sect. 2.1 (to see that Löb’s Theorem is provable under all realizations, one also
uses the Gödel–Carnap Fixed Point Lemma).

The proof of PrL(PA) ⊆ GL (arithmetical completeness) was proven by
Robert Solovay in [9]. Given a modal formula A with �GL A, we need a real-
ization ∗ with �PA A∗. The idea of Solovay’s proof is to simulate in PA a Kripke
model M = 〈{1, . . . , n}, R, V 〉 for GL, with M, 1 � A (M exists by Theorem 3).
This is done by constructing sentences σ0, . . . , σn of the language of arithmetic
such that, intuitively, σi corresponds to the node i of M (the sentence σ0 is
used as an auxilliary). We will refer to the sentences σ0 . . . , σn as the Solovay
sentences. The arithmetical realization ∗ is defined as: p∗ :=

∨
i:M,i�p σi. The

Kripke model M is then simulated in PA in the sense that for all A ∈ L�,

M, i � A ⇒ �PA σi → A∗ (2)

The proof of (2) uses the following properties of the Solovay sentences:

1. �PA σi → ¬σj if i �= j
2. �PA σi → Con(σj) if iRj, or if i = 0 and j �= 1
3. �PA σi → Pr(

∨
j:iRj σj) for i ≥ 1.

Furthermore, we have that for all 0 ≤ i ≤ n, the sentence σi is independent from
PA. We shall use the above properties in Sect. 4 to prove that any finite GL–
model is bisimilar to some arithmetical Kripke model, obtaining the arithmetical
completeness of GL as a corollary.
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2.3 Internal Models

Roughly speaking, a model M′ is an internal model of a model M (or: internal
to M) if the domain of M′ is definable in M, and the interpretations of the
atomic formulas of ΣM′ are given by formulas of ΣM.

Definition 6 (Relative Translation). Let Θ be a signature. A relative trans-
lation from Σ to Θ is a tuple j = 〈δ, τ〉, where δ is a Θ–formula with one free
variable, and τ a mapping from relation symbols R of Σ to formulas Rτ of Θ,
where the number of free variables of Rτ is equal to the arity of R. We extend τ
to a translation τ� from all formulas of Σ to formulas of Θ by requiring:

1. (Rx0 . . . xn)τ�

= Rτx0 . . . xn for an n + 1–ary relation symbol R
2. (ϕ → ψ)τ�

= ϕτ� → ψτ�

3. ⊥τ�

= ⊥
4. (∀xϕ)τ�

= ∀x (δ(x) → ϕτ�

).

We will, par abus de langage, confuse τ and τ� from now on. If j is a relative
translation, we refer to the components of j by δj and τj . We only consider cases
where the language of the internal model is the language of arithmetic; the above
definition can of course also be formulated for the more general case.

Definition 7 (Internal Model). Let M be a model, and let j = 〈δ, τ〉 be a
relative translation from Σ to ΣM. We say that j defines an internal model of
M if M � ϕτj for every axiom ϕ of PA. If a relative translation j defines an
internal model of M, we denote by Mj the following model:

– Mj := {a ∈ M | M � δj(a)} / ∼, where a ∼ b :⇔ M � Eτj [a, b]
– If a,b ∈ Mj, let Mj � Sab :⇔ M � Sτj [a, b] for some a ∈ a, b ∈ b, and

similarly for other atomic formulas.

Note that if j defines an internal model of M then – by our choice of axioms of
PA – we have that in M, Eτj is a congruence relation, and the relations defined
by the formulas Zτj , Sτj , Aτj , and Mτj are functional relative to Eτj .

We say that M′ is an internal model of M, and write M � M′, if some
relative translation j to ΣM defines an internal model of M, and M′ is (modulo
isomorphism) this internal model, i.e. M′ ∼= Mj . In this context, we shall often
refer to M as the external model. The following theorem is a well–known basic
fact about the internal model relation.

Theorem 5. Let M be a model, and suppose that a relative translation j from
Σ to ΣM defines an internal model of M. Then for any formula ϕ(x0, . . . , xn)
of the language Σ of arithmetic,

Mj � ϕ[a0, . . . ,an] ⇔ M � ϕτj [a0, . . . , an] for a0 ∈ a0, . . . , an ∈ an. (3)

In particular, Mj � ϕ ⇔ M � ϕτj for any sentence ϕ of Σ.

Proof. By induction on the complexity of ϕ(x0, . . . , xn).

Note that if j defines an internal model of M (as in Definition 7) then it follows
by Theorem 5 that Mj � ϕ for every axiom ϕ of PA. Hence M � M′ implies
that M′ is a model of PA.
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3 t–Internal and t–Associated Models

We introduce three arithmetical accessibility relations between models of PA,
all of which are based on the t–internal model relation. Roughly speaking, an
internal model M′ of M is a t–internal to M if M has a truth–predicate for
sentences of ΣM′ , and furthermore the axioms of PA (including the nonstandard
ones) are in the extension of the truth predicate. We shall generalize this rela-
tion by allowing the truth predicate to be definable in M with parameters, or
definable in a certain expansion of M.

3.1 Definitions

Before defining the t–internal model relation, it is useful to mention a technical-
ity. Suppose that j defines an internal model of M. As suggested above, we want
to require that M has a truth predicate tr for the internal model Mj . Thus for
any sentence ϕ of the language of Mj ,

M � ϕτj ↔ tr(ϕ). (4)

But we shall require something even stronger, namely we want the truth predi-
cate to be well-behaved with respect to the boolean connectives and the quan-
tifiers, so that (4) can be proved by an induction on the complexity of ϕ. For
instance, to express that tr behaves as expected with respect to the atomic for-
mulas, we would like to say (in M), that whenever m ∈ Mj , then Zτ [m] if and
only if the code of Zm is in the extension of tr. However, a truth predicate should
apply to codes of sentences. Hence when inside the truth predicate, we want to
associate to m (the code of) some constant naming it.

A simple way to achieve this is to stipulate that m is the code of its own name,
and in general that elements of Mj are codes of their own names. This means
that inside M we are working with the language Σ ∪ {cm | m ∈ Mj}, where for
all m ∈ Mj , �cm� = m. To avoid ambiguities that this could potentially lead to5,
we additionally assume the domain of Mj (as given by δj) to be disjoint from
the set of codes of terms of Σ (in M). This can always be arranged without high
costs in complexity, for example by making the range of the domain function
to consist of even numbers, and the range of the coding function to be a subset
of the odd numbers. The fact that this setup excludes the possibility of M and
Mj sharing the same domain need not concern us here — we think of models
modulo isomorphism, and thus the internal model relation is still allowed to be,
for example, reflexive.
5To see how such ambiguities can arise, suppose (in M) that 17 is in the extension of

δj , but also that 17 is the code of the constant 0. Suppose also that we use sequences
to code syntactical objects; for example the code of the sentence Zc (where c is a
constant) is the number 〈�Z�, �c�〉 (where 〈m, n〉 is the code of the pair (m, n)). The
number 〈Z, 17〉 can then either be parsed as coding the sentence Z0 of the language
Σ, or the sentence Zc17 of the language Σ ∪ {cm | m ∈ Mj}.



Kripke Models Built from Models of Arithmetic 165

We refer to the language Σ∪{cm | m ∈ Mj} as Σδj
. The formulas represent-

ing syntactical objects of this language in M are distinguished by the subscript
δj . Thus the formula sentδj

expresses the property of being a sentence of the
language Σ ∪ {cm | m ∈ Mj}.

We introduce some notation to make our definition of the t–internal model
relation more readable. Let sbst1(x, y) be a formula of Σ that is an intensionally
correct representation of the primitive recursive function Sbst1 with:

Sbst1(m,n) =

{
�[t/v0]ϕ� if n = �ϕ�, m = �t�, and t is free for v0 in ϕ

0 otherwise

In particular, we have for any formula ϕ and for any term t,

�PA sbst1(�t�, �ϕ�) = Sbst1(�t�, �ϕ�). (5)

Let M be a model, and let j = 〈δ, τ〉 be a relative translation to ΣM. Fix in
M (the code of) a (possibly nonstandard) formula ϕ of the language Σδ, with
at most v0 free. We shall use

tr(ϕ(x)) (6)

as shorthand for tr (sbst1(x, ϕ)). For example, taking Zv0 as ϕ, tr(Zx) stands for
tr(sbst1(x,Zv0)). Note that if x is in the extension of δ, it is the code of the
constant cx, and hence sbst1(x, �Zv0�) is the code of the Σδ–sentence Zcx. Thus
in this case tr(Zx) is tr(Zcx).

More generally, if ϕ is a formula all of whose free variables are among
v0, . . . , vn, we write tr(ϕ(x0, . . . , xn)) as shorthand for

tr (sbstn(x0, . . . , xn, ϕ)) , (7)

where sbstn is an intensionally correct representation of the function correspond-
ing to the simultaneous substitution of n terms in a formula. We write formδ(v0)
for the set of formulas of Σδ with at most v0 free.

Definition 8 (t–Internal Model). Let M be a model, and j = 〈δ, τ〉 a relative
translation from Σ to ΣM. We say that j defines a t–internal model of M if
there is a formula tr of the signature ΣM with one free variable, such that the
following sentences are satisfied in M:

1. ∀x, y (δ(x)∧ δ(y) → ((Sxy)τ ↔ tr(Sxy))), similarly for other atomic formulas
2. ∀ϕ ∈ sentδ,∀ψ ∈ sentδ (tr(ϕ → ψ) ↔ (tr(ϕ) → tr(ψ)))
3. ∀ϕ ∈ sentδ (tr(¬ϕ) ↔ ¬tr(ϕ))
4. ∀ϕ ∈ formδ(v0),∀u ∈ var {tr ([u/v0]∀uϕ) ↔ ∀x (δ(x) → tr(ϕ(x)))}
5. ∀ϕ ∈ sent (π(ϕ) → tr(ϕ)).

We refer to the formula tr as the truth predicate (for the internal model), and
write trj for the truth predicate that comes with a relative translation j as in
Definition 8. The next theorem states that trj is indeed a well–behaved truth
predicate – modulo the translation τj – for the language of the internal model.
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Theorem 6. Suppose that j defines a t–internal model of M, and let ϕ be
a formula of Σ whose free variables are among v0, . . . , vn. Then the following
sentence6 is satisfied in M:

δj(x0) ∧ . . . ∧ δj(xn) → (ϕτj (x0, . . . , xn) ↔ trj(ϕ(x0, . . . , xn))) . (8)

In particular, M � ϕτj ↔ trj(ϕ) for any sentence ϕ of Σ.

Proof. For readability, we shall drop the subscript j from δ, τ , and tr. The
proof is by (external) induction on the complexity of ϕ. The base cases hold
by Definition 8. The inductive cases for → and ¬ follow easily by using that tr
and τ commute with the propositional connectives. We treat the universal case,
assuming n = 0 for simplicity. Let ϕ be the formula ∀y ψ(v0, y). Argue in M:

δ(x) ∧ δ(y) → {ψτ (x, y) ↔ tr(ψ(x, y))}
→ δ(x) → {∀y (δ(y) → ψτ (x, y)) ↔ ∀y (δ(y) → tr(ψ(x, y)))}
↔ δ(x) → {(∀y ψ(x, y))τ ↔ tr(∀y ψ(x, y))} ,

where the first line is the induction assumption, the second follows by logic, and
the third line follows by the properties of τ and tr.

Suppose that j defines a t–internal model of M. Using Theorems 5 and 6 of
Definition 8, it is easy to see that M � ϕτj for every axiom ϕ of PA. Hence,
in particular j defines an internal model of M. We say that M′ is a t–internal
model of M, and write M�tM′, if some relative translation j defines a t–internal
model of M, and M′ ∼= Mj (where Mj is as in Definition 7).

Allowing the truth predicate to contain parameters from the external model
yields the notion of a t–internal model with parameters.

Definition 9 (t –Internal Model with Parameters). Let M be a model,
and j = 〈δ, τ〉 a relative translation to ΣM. We say that j defines a t–internal
model of M with parameters if there is a formula tr of the signature ΣM with
two free variables, and some7 m ∈ M such that 1–5 of Definition 8 are satisfied
in M, if the remaining free variable in tr is interpreted as8 m.

It is clear that an analogue of Theorem 6 holds for the case where j defines a
t–internal model of M with parameters. Hence if j defines a t–internal model
of M with parameters, it also defines an internal model of M (note that if ϕ
is an axiom of PA, then ϕ and also ϕτj are sentences, whence M � ϕτj [m] iff
M � ϕτj ). We say that M′ is a t–internal model of M with parameters, and
write M�tpar M′, if some relative translation j defines a t–internal model of M
with parameters, and M′ ∼= Mj .
6 The free variables are assumed to be bound by universal quantifiers.
7 Due to the availability of coding, allowing one parameter is as strong as allowing an

arbitrary finite number of parameters.
8 For example, for 5 we require that M � ∀ϕ ∈ sent (π(ϕ) → tr(ϕ, y))[m].
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The definition of our final example of an arithmetical accessibility relation
uses the notion of an inductive expansion. A model M+ is said to be an inductive
expansion of a model M in case M+ is an expansion of M (i.e. M and M+

have the same domain, ΣM ⊆ ΣM+ , and the interpretation of ΣM is the same
in M and in M+), and furthermore M+ satisfies the induction axioms in the
language ΣM+ . Allowing the truth predicate to be definable in some inductive
expansion of the external model yields the notion of a t–associated model.

Definition 10 (t–Associated Model). Let M be a model, and j = 〈δ, τ〉 a
relative translation from Σ to ΣM. We say that j defines a t –associated model
of M if there is some inductive expansion M+ of M, and some formula tr of
ΣM+ with one free variable such that 1–5 of Definition 8 hold in M+.

Note that if j defines a t–associated model of M and M+ is an inductive expan-
sion of M as in Definition 10, then j defines a t–internal model of M+. Hence
by Theorem 6, M+ � ϕτj ↔ trj(ϕ) for any sentence ϕ of Σ. Furthermore since
for all ϕ, ϕτj is a sentence of ΣM, we have that M+ � ϕτj iff M � ϕτj . Hence
by 5 of Definition 8, M � ϕτj for every axiom ϕ of PA, and thus in particular j
defines an internal model of M. We say that M′ is a t–associated model of M,
and write M 	t M′, if some relative translation j defines a t–associated model
of M, and M′ ∼= Mj .

Remark 2. If M′ is a t–associated model of M, then the interpretations of the
atomic formulas of ΣM′ are given by formulas of ΣM, and some inductive expan-
sion M+ of M has a truth predicate for M′. For the purposes of this article (in
particular for proving Theorem7 below), we could also have chosen a more gen-
eral definition, where the interpretations of the atomic formulas of ΣM′ are only
required to be given by formulas of M+. Equivalently, we could postulate that
the interpretations of the atomic formulas are only defined by the truth predicate
in the first place. For example, Zτ would be the formula tr(sbst1(x,Zv0)).

As an overview of the relations between models introduced so far, we note that
the following implications are easily seen to hold:

M �t M′ ⇒ M �tpar M′ ⇒ M 	t M′ ⇒ M � M′ (9)

We will see in Sect. 5 that the reverse implications fail. As we go from right to
left above, the external model is required to have more and more strength in
comparison to the internal one.

3.2 Arithmetical Accessibility Relations

In this section, we use the term “worlds” to refer to models of PA whose signature
is the signature Σ of arithmetic. A relation R between worlds is said to be
an arithmetical accessibility relation if for any sentence ϕ of the language of
arithmetic, and for any world M, M � Prπ(ϕ) iff M′ � ϕ for all worlds M′

with M R M′. We will show that each of the relations �t, �tpar and 	t between
worlds is an arithmetical accessibility relation.
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Theorem 7. Let M be a world, and R ∈ {�t,�tpar,	t}. For any sentence ϕ of
the language of arithmetic,

M � Pr(ϕ) ⇔ for all worlds M′ with M R M′, M′ � ϕ. (10)

Proof. Fix a sentence ϕ of the language of arithmetic. We give here the general
structure of the proof; the essential ingredients are provided by Theorems 8 and
9 below.

For the direction from left to right, suppose that M � Pr(ϕ), and let M′ be
such that M R M′. Since both M �t M′ and M �tpar M′ imply M 	t M′,
it suffices to prove the claim for 	t, i.e. it suffices to show that if M 	t M′,
then M′ � ϕ. So suppose that M 	t M′, let j be a relative translation that
defines a t–associated model of M with Mj ∼= M′, and let M+ be an inductive
expansion of M with the truth predicate. Since M � Pr(ϕ) by assumption, also
M+ � Pr(ϕ), and hence by Theorem8 below, M+ � trj(ϕ). By Theorem 6 this
implies M+ � ϕτj , and thus also M � ϕτj . By Theorem 5 it follows that Mj � ϕ,
and thus also M′ � ϕ.

For the other direction, assume that M � ¬Pr(ϕ). Since M �t M′ implies
both M �tpar M′ and M 	t M′, it now suffices to show the claim for �t, i.e.
that there is some M′ with M �t M′ and M′ � ¬ϕ. Theorem 9 below provides
a model M′ with the required properties.

It is part of the definition of a t–associated model that some inductive expan-
sion of the external model “knows” that all axioms of PA are true in the internal
model. According to the following theorem, it is even the case that any such
inductive expansion “knows” every theorem of PA to be true in the internal
model. The reason for this is that the inductive expansion has sufficient amount
of induction available for proving, by an internal induction on the complexity of
a PA–proof, that the property of being true extends from axioms to theorems.

Theorem 8. Suppose that j defines a t–associated model of M, and let M+ be
an inductive expansion of M with the truth predicate trj. Then

M+ � ∀ϕ ∈ sent (Prπ(ϕ) → trj(ϕ)). (11)

Proof Sketch. As usual in such cases, we need to prove the following stronger
claim concerning formulas:

M+ � ∀ϕ ∈ form (Prπ(ϕ) → ∀a ∈ asδj trj(ϕ[a])). (12)

where a is an assignment from the variables of Σ to elements in the extension
of δj , and ϕ[a] denotes the sentence9 of the language Σδj

obtained by simulta-
neously substituting the constant ca(vi) for vi.

For readability, we shall drop the subscript j from δ and tr. Since induction
holds in M+ by assumption, we can use Theorem 1 to prove the statement,
taking as α(ϕ) the formula ∀a ∈ asδj trj(ϕ[a]). Thus it suffices to show that the
following sentences are satisfied in M+:
9 Remember that elements of the internal model are assumed to function simultane-

ously as codes of their own names.
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1. ∀ϕ,ψ ∈ form {∀a ∈ asδ tr((ϕ → ψ)[a]) ∧ ∀a ∈ asδ tr(ϕ[a]) → ∀a ∈ asδ tr(ψ[a])}
2. ∀ϕ ∈ form(π(ϕ) → ∀a ∈ asδ tr(ϕ[a]))
3. ∀ϕ ∈ form(λ(ϕ) → ∀a ∈ asδ tr(ϕ[a])).

Modulo some facts10 concerning the assignments in asδ that we assume to hold
in M+, 1 and 2 are consequences of 2 and 5 of Definition 8 respectively. For 3,
we have to show (in M+) that whenever a formula ϕ is an axiom of first–order
logic, then ϕ is true under every assignment in asδ. We show this by an internal
subsidiary induction on the structure of ϕ, using the fact that tr commutes
with the propositional connectives and the quantifiers (together with the above
mentioned facts concerning the assignments in asδ). Note that here again we
essentially use the fact that M+ is an inductive expansion of M.

Theorem 9 (Arithmetized Completeness). Let M � PA, and M � Con(ϕ).
Then there exists some M′ with M �t M′ and M′ � ϕ.

Proof Sketch. It is a well–known fact that if M � Con(ϕ), then M has an internal
model where ϕ is true. The proof is by formalizing the Completeness Theorem for
first–order logic11 in PA. By examining the proof, one can see that the internal
model constructed in this process is actually a t–internal model. The (definable)
formula representing the Henkin set in M can be seen as a truth predicate, and
furthermore it defines a model of PA + ϕ in M as required in Definition 8.

4 A New Perspective on Solovay’s Theorem

Arithmetical accessibility relations can be used to construct big arithmetical
Kripke frames whose nodes are models of PA with signature Σ. We shall show
that any GL–model is bisimilar to a Kripke model based on such a Kripke frame,
obtaining the arithmetical completeness of GL as a corollary.

Definition 11 (Arithmetical Kripke Frame). An arithmetical Kripke frame
is a structure Fbig = 〈Wbig, Rbig〉, where Wbig is the collection of worlds modulo
isomorphism, and Rbig∈ {�t,�tpar,	t}.
Remark 3. An alternative but completely legitimate option is to work with arith-
metical Kripke frames whose nodes are complete theories (in the language of PA)
extending PA. The definitions in the previous section can be adjusted so as to
define a relation between complete theories, and also the arguments leading to
Theorem 7 would work analogously as in the case of models. We have chosen
the model–theoretic approach since this yields a more natural definition of our
triplet of arithmetical accessibility relations, in particular of the relation 	tpar

where the truth predicate is allowed to contain parameters from the external
model. Another option would be to take as Wbig the collection of all models

10 For example, it should hold in M+ that if ϕ is a sentence of the language Σδ, then
tr(ϕ) if and only if ∀a ∈ asδ tr(ϕ[a]).

11 This was first noted in [12], and more carefully articulated in [2].
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of PA modulo elementary equivalence. In fact, the two alternative options are
equivalent in the sense that the resulting arithmetical Kripke frames are isomor-
phic — to every complete theory corresponds a class of elementary equivalent
models and vice versa.

Although Fbig is a Kripke frame, it is not a GL–frame. As we will see in Sect. 5
below, Rbig fails to be conversely well-founded in all of the three cases (taking
Fbig with 	t, Fbig even contains a reflexive point).

Given an arithmetical realization ∗, the forcing relation �∗ on Fbig is defined
as follows:

M �∗ p :⇔ M � p∗, (13)

i.e. the propositional letter p ∈ L� is forced at node M if and only if the
arithmetical sentence p∗ is satisfied in M (seen as a first–order model of PA).
Let M∗

big denote the resulting Kripke model. As an immediate consequence of
Theorem 7, we have for every sentence A ∈ L� and for every M ∈ Wbig,

M∗
big,M �∗ A ⇔ M � A∗. (14)

This means that the forcing of modal formulas is independent, modulo the real-
ization ∗, of whether M is seen as a node in the Kripke model M∗

big, or as a
first–order model of PA.

Let M = 〈{1, . . . , n}, R,�〉 be a Kripke model for GL, and let ∗ be the
Solovay realization corresponding to M , i.e. p∗ :=

∨
i:M,i�p σi, where σ0, . . . , σn

are the Solovay sentences. Remember from Sect. 2.2 that the Solovay sentences
are constructed in such a way that the following hold:

1. �PA σi → ¬σj if i �= j
2. �PA σi → Con(σj) if iRj, or if i = 0 and j = 1
3. �PA σi → Pr(

∨
j:iRj σj) for i ≥ 1

4. �PA σi and �PA ¬σi for all i.

The following theorem states that M∗
big is bisimilar to M .

Theorem 10. Fix a GL-model M = 〈{1, . . . , n}, R,�〉. Let σ0, · · · , σn be the
corresponding Solovay sentences, and p∗ :=

∨
i:M,i�p σi, for any propositional

letter p of L�. The relation Z : W × Wbig defined as: (i,M) ∈ Z :⇔ M � σi for
i ≥ 1 is a bisimulation between M and M∗

big. Furthermore, for every node i of
M there is some node M of M∗

big such that (i,M) ∈ Z.

Proof. Since for all i, σi is independent from PA, we have for all σi some model
M with M � σi, and thus for all i there is some M such that (i,M) ∈ Z. Note
also that any model where σ0 is true is not in the range of Z. We will now verify
that Z is a bisimulation.

To see that if (i,M) ∈ Z then i and M satisfy the same propositional letters
suppose first that M, i � p. Then by definition of ∗, we have σi as a disjunct
of p∗. By definition of Z, we have that M � σi, hence M � p∗, and thus by
definition of �∗ it is the case that Mbig,M �∗ p. If on the other hand M, i � p,



Kripke Models Built from Models of Arithmetic 171

then p∗ = σj1 ∨ · · · ∨ σjm
, where i �= jk for all k. By property 1 of the Solovay

sentences, we find that �PA σi → ¬σjk
for all k, whence �PA σi → ¬p∗ and thus

M � ¬p∗. By definition of �∗, we have that Mbig,M �

∗ p.
To verify the back -condition of the bisimulation, suppose that (i,M) ∈ Z and

iRj. By the assumption that (i,M) ∈ Z, we have that M � σi. By property 2 of
the Solovay sentences and the assumption that iRj, we have �PA σi → Con(σj),
and thus M � Con(σj). By Theorem 7 there is some M′ with M Rbig M′ and
M′ � σj . By definition of Z, this means that (j,M′) ∈ Z.

Finally, to verify the forth–condition suppose that (i,M) ∈ Z and let M′

be such that M Rbig M′. Since (i,M) ∈ Z, we have that M � σi. By property
3 of the Solovay sentences, �PA σi → Pr(

∨
j:iRj σj), and so M � Pr(

∨
j:iRj σj).

By Theorem 7, this implies M′ �
∨

j:iRj σj , i.e. there is some j with iRj and
M′ � σj , i.e. with (j,M′) ∈ Z as required.

Corollary 1 (Arithmetical Completeness of GL ). PrL(PA) ⊆ GL

Proof. If GL � A for some A ∈ L�, then by modal completeness of GL there is a
GL–model M with M = 〈{1, . . . , n}, R,�〉, and M, 1 � A. Let ∗ be the Solovay
realization corresponding to M , and let Z be the bisimulation from Theorem 10.
Let M ∈ Wbig be such that (1,M) ∈ Z, i.e. M � σ1. Since Z is a bisimulation,
we have M∗

big,M �

∗ A by Theorem 2. By (14), this implies M � A∗. Since M
is a model of PA, this means that �PA A∗ as required.

5 Properties of Arithmetical Kripke Frames

This section contains some observations concerning the structure of the big arith-
metical Kripke frames. We also provide separating examples for the different
relations between models of PA introduced in this paper.

First, it is not difficult to see that the relations �t and �tpar are transitive.
Since the definition of a t–associated model postulates a truth predicate in some
inductive expansion, the transitivity of 	t is at least not obvious.

However, different from GL–frames, the big Kripke frames are not conversely
well–founded. This follows from the fact that there exists a sequence of con-
sistent theories {Tn}n∈ω such that Tn � Con(Tn+1) for all n. This was proven
independently by Feferman and Friedman, as an answer to a question posed by
Gaifman (see [8]). By Theorem 9, we get a sequence of models {Mi}i∈ω with
Mi � Ti and Mi �t Mi+1 for all i. Since M �t M′ implies M �tpar M′ and
M 	t M′, this yields an infinite ascending chain in all our arithmetical Kripke
models.

The following lemma shows that taking �t for Rbig, the big arithmetical
frame is irreflexive. Indeed, if a world M sees a world M′ in this frame, M and
M′ cannot even satisfy the same sentences of PA.

Proposition 1. If M �t M′, then M �≡ M′.
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Proof. The proof of Proposition 1 proceeds by a modified liar–argument. Sup-
pose that j defines a t–internal model of M. By the Gödel–Carnap Fixed Point
Lemma, let γ be a sentence of the language Σ such that

M � γ ↔ ¬tr(γ). (15)

By Theorem 6, we also have M � γτj ↔ tr(γ). Using Theorem 5,

Mj � γ ⇔ M � γτj ⇔ M � tr(γ) ⇔ M � γ, (16)

whence clearly M �≡ Mj , and thus also M �≡ M′ whenever M �t M′.

In contrast, there are elementary equivalent models M and M′ such that M′ is
a t–internal model of M with parameters.

Proposition 2. There are worlds M and M′ with M ≡ M′ and M �tpar M′.

Proof. Let N be the standard model, and let Σc be the signature Σ ∪{c}, where
c is a constant. One can use a standard compactness argument to show that the
theory

T := ThΣ(N ) ∪ {ϕ ∈ c | N � ϕ} + Con{ϕ | ϕ ∈ c} (17)

in the language Σc has a model M+. Since M � Con{ϕ | ϕ ∈ c}, we can use
the arithmetized Henkin construction to find a t–internal model M′ of M+ with
M′ � ϕ for all ϕ ∈ c. Let M be the reduct of M+ to Σ, and note that M�tparM′

(since the construction of M′ inside M uses cM as a parameter). Since c contains
the codes of all true sentences and since M is a model of ThΣ(N ), we have that
M ≡ M′.

Note that Propositions 1 and 2 provide a separating example for the relations
�tpar and �t.

Remark 4. As pointed out in Remark 3, we could have chosen as Wbig the collec-
tion of models of PA modulo elementary equivalence. In that case, 〈Wbig,�tpar〉
would thus contain a reflexive point, whereas 〈Wbig,�t〉 would not.

We now provide a separating example for the relations 	t and �tpar, and see
that the frame 〈Wbig,	t〉 contains a reflexive point.

Proposition 3. Let N be the standard model. Then N �tpar N .

Proof. Note that all elements of N are definable, and thus N �tpar M implies
N �t M for all M. In particular N �tpar N would imply N �t N , which is
excluded by Proposition 1.

To complete the separating example, we need to show that N 	t N , where N
is the standard model. This follows from the fact that N has a full inductive
satisfaction class. Explaining the notion of a full inductive satisfaction class and
its relation to the t–associated model relation is beyond the scope of this paper,
the reader is referred to [6] for more information.
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Finally, we provide a separating example for �, the internal model relation,
and 	t. Let M be any model with M � Pr(⊥). It is clear that M�M. However
there is no inductive expansion M+ that has a truth predicate for M satisfying
1–5 of Definition 8. If M+ were such an expansion, then by Theorem 8, M+ �
Pr(⊥) → tr(⊥), but also by assumption M+ � Pr(⊥), and so M+ � tr(⊥) which
is a contradiction. Thus M �	t M.

We have now delivered our promise of Sect. 3.1, namely to show that all the
implications in

M �t M′ ⇒ M �tpar M′ ⇒ M 	t M′ ⇒ M � M′ (18)

are irreversible.

6 Conclusion

We have established three examples of arithmetical accessibility relations between
models of PA. We have shown how, as a result, one can see the collection of models
of PA, related by one of these relations, as a big Kripke model where the forcing
of modal formulas coincides with the local satisfiability of first–order sentences
(modulo an arithmetical realization). We showed how this insight can be used to
gain a new, model–theoretic perspective on Solovay’s proof of arithmetical com-
pleteness of the modal logic GL. Finally, we have seen that the properties of the big
arithmetical Kripke model are dependent on the exact choice of the accessibility
relation as well as the domain of the Kripke model. We conclude with some open
questions.

Question 1. The arguments of this article go through if we replace PA with a
Σ1–sound theory containing IΣ2. However, Solovay’s Theorem holds for all Σ1–
sound theories containing EA. Can we make our arguments work for theories
weaker than IΣ2? (Σ2–induction is used in the standard proof of the Arithme-
tized Completeness Theorem).

Question 2. What is the relation between the big arithmetical frames and the
canonical model for GL?

Question 3. What is the modal logic of the arithmetical Kripke model if the
accessibility relation is replaced by some other relation between models of PA?
Some possibilities are: the internal model relation where we demand a truth
predicate for the internal model (but do not require that the axioms of PA are
in the extension of the truth predicate), the internal model relation, and the
end-extension relation. A difference from the t–internal model relation is that
these relations need not be definable by an arithmetical formula.
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Abstract. In this article we investigate the positive, i.e. ¬, ⊥-free for-
mulas of intuitionistic propositional and predicate logic, IPC and IQC,
and minimal logic, MPC and MQC. For each formula ϕ of IQC we define
the positive formula ϕ+ that represents the positive content of ϕ. The
formulas ϕ and ϕ+ exhibit the same behavior on top models, models with
a largest world that makes all atomic sentences true. We characterize the
positive formulas of IPC and IQC as the formulas that are immune to the
operation of turning a model into a top model. With the +-operation on
formulas we show, using the uniform interpolation theorem for IPC, that
both the positive fragment of IPC and MPC respect a revised version
of uniform interpolation. In propositional logic the well-known theorem
that KC is conservative over the positive fragment of IPC is shown to
generalize to many logics with positive axioms. In first-order logic, we
show that IQC + DNS (double negation shift) + KC is conservative over
the positive fragment of IQC and similar results as for IPC.

Keywords: Intuitionistic logic · Minimal logic · Jankov’s logic · Inter-
mediate logics · Positive formulas · Interpolation · Conservativity

1 Introduction

In this paper we discuss the formulas in intuitionistic logic containing no nega-
tion or ⊥. For propositional logic IPC this is the fragment [∧,∨,→]. Smaller frag-
ments not containing both ∨ and → have been extensively studied. By Diego’s
theorem [4] they are locally finite, i.e. they do contain only finitely many equiv-
alence classes of formulas in a fixed finite number of variables. For a discussion
of the history of these studies see [15]. The fragment [∧,∨,→], which we call the
positive fragment, does not have this property. It has been little studied as a frag-
ment. Its interest is to start with that it has a very close relationship to minimal
logic, the logic resulting when the ex falso principle is deleted from intuitionistic
logic. In fact, one can see minimal propositional logic as this fragment with one
designated propositional variable (the contradiction), and this is not different
in first order logic. The ex falso principle has been criticized from the start, for
example by Kolmogorov [13] in the earliest partial formalization of intuitionistic
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logic. Heyting, however, did accept the principle in his basic papers [10], and
from then on it has been accepted as a principle of intuitionistic logic. After
this, Johansson, not supporting the ex falso principle, introduced minimal logic
in [12]. Some proponents of intutionistic mathematics (Griss [9], van Danzig)
favored the idea of dropping negation altogether: negationless mathematics, but
they had few followers. Brouwer himself thought formulas with negation to be
indispensable in intuitionistic mathematics [1].

It is worth mentioning that in the pure arithmetic (of natural numbers),
formalized in Heyting Arithmetic HA it makes no difference whether one accepts
the ex falso principle or introduces negation, since in HA from 0 = 1 all arithmetic
sentences are derivable without the use of either (see e.g. [16], Vol. I, Proposition
3.2, p. 126). In analysis this is still true as long as one has only equations between
numerical terms as atomic formulas, but no longer so when one e.g. has set
variables with undecidable atomic formulas X(t). A final striking fact is that
first order intuitionistic logic without ⊥ can be proved to be complete for so-
called Beth-models by constructive methods whereas this is not the case for full
first order logic (see [16], Vol. II, p. 685, which uses a proof by H. Friedman in an
unpublished manuscript). In any case, it is good to start with logic to see how the
positive fragment fits into the full logic. For that purpose we define in this paper
a +-operation on the formulas of intuitionistic logic which we claim represents
their positive content. This operation turns out be very useful in studying various
properties of positive formulas in the framework of the full logic.

Minimal propositional logic MPC and minimal predicate logic MQC are
obtained from the positive fragment, i.e. the ¬,⊥-free fragment, of intuition-
istic propositional logic IPC and intuitionistic predicate logic IQC by adding a
weaker negation: ¬ϕ is defined as ϕ→ f , where the special propositional variable
f is interpreted as the contradiction. Therefore, the language of minimal logic
is the ¬,⊥-free fragment of intuitionistic logic plus f . Variable f has no specific
properties, the Hilbert type system for MQC is as IQC’s but without f → ϕ. An
alternative formulation of minimal logic, in fact the original one, in a language
containing ¬ instead of f can be given by adding to a Hilbert type axiom system
for the positive fragment the axiom (p → q) → ((p → ¬q) → ¬p) (see [12]).

For the semantics of minimal logic, f is interpreted as an ordinary proposi-
tional variable, so we get the semantics of the [∨,∧,→]-fragment of IPC (resp.
the [∨,∧,→,∀,∃]-fragment of IQC), with an additional propositional variable f .

The content of this article is the following:
In Sect. 2 we recall the syntax and semantics of intuitionistic and minimal

logic. In Sect. 3 we introduce the top-model property and the +-operation on
formulas, and show that the top-model property characterizes the positive for-
mulas of IPC and IQC. We then use this property in Sect. 4 to show that the
positive fragment of IPC has a revised form of uniform interpolation and that
this transfers to MPC. In Sect. 5 we discuss the behavior of positive formulas
in some extensions of IPC and IQC, taking as a starting point the theorem that
Jankov’s Logic KC has the same positive fragment as IPC.
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2 Syntax and Semantics of MPC

In this section we recall the syntax as well as the derivation systems of IPC, IQC,
MPC and MQC, and their Kripke semantics. For more details, see [2] and [17].

2.1 Syntax

The propositional language LI(P ) of IPC consists of a countable or finite set P of
propositional variables p0, p1, p2, . . . , propositional constants ⊥,� and binary
connectives ∧,∨,→. A first order language LI(Q) of IQC consists of a countable or
finite set Q of predicate letters and individual constants1, propositional constants
⊥,�, binary connectives ∧,∨,→ and quantifiers ∀ and ∃. In both cases ¬ϕ is
defined as ϕ → ⊥, although in practice it is often convenient to view formulas
as containing both ¬ and ⊥. The positive fragment L+

I (P ) of IPC consists of the
formulas of LI(P ) that do not contain ¬ or ⊥, similarly for a language LI(Q).

The propositional language LM(P ) of MPC (resp. first order language LM(Q)
of MQC) consists of the formulas of the positive fragment to which the special
propositional variable f is added. We may drop the indices I and M and write
L(P ) etc. if the distinction is irrelevant.

We take the axioms of IPC as in [2]. The axioms for MPC are the same except
that ⊥→ ϕ is left out. So, derivations in MPC are the same as in IPC except
that no ⊥ or ¬ occurs, instead f may have occurrences. To add predicate-logical
axioms to obtain IQC and MQC we use the approach of Enderton [5] to classical
logic with universally quantified axioms and modus ponens as the only rule. In
this paper we will both proof-theoretically and semantically be only interested
in sentences.

For the discussion of uniform interpolation in Sect. 4 we introduce the fol-
lowing notation: For any formula ϕ and any sequence p = (p1, . . . , pn) of propo-
sitional variables (here pi can be f , but cannot be ⊥,�), ϕ(p) is a formula with
only propositional variables in p.

2.2 Kripke Semantics

In this part we give the Kripke semantics of our systems.

Definition 1. A propositional Kripke frame is a pair F = (W,R) where W is
a non-empty set and R is a partial order on it.

A propositional Kripke model is a triple M = (W,R, V ) where (W,R) is a
Kripke frame and V is a valuation V : P ∪ {f} → P(W ) (where P(W ) is
the powerset of W) such that for any q ∈ P ∪ {f}, V (q) is an upset: for any
w,w′ ∈ W , w ∈ V (q) and wRw′ imply w′ ∈ V (q).

To be able to treat propositional and predicate logic uniformly we define first-
order models in a similar way. For a language L(Q), we write AtQ or At for the
set of atomic sentences.
1 We do not consider identity and functional symbols, but our results will surely hold

for the extension with such symbols.
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Definition 2. A predicate Kripke frame for a language L(Q) is a triple F =
(W,R, {Dw |w ∈ W}) where W is a non-empty set, R is a partial order on W ,
and {Dw |w ∈ W} a set of non-empty domains such that for any w,w′ ∈ W ,
wRw′ implies Dw ⊆ Dw′ .

A predicate Kripke model for a language L(Q) is a quadrupleM = (W,R, {Dw |
w ∈ W}, V ) where (W,R, {Dw |w ∈ W}) is a Kripke frame and V is a valuation
V : At ∪ {f} → P(W ) such that for any Ad1 . . . dk in At, V (Ad1 . . . dk) ⊆ {w ∈
W | (d1, . . . , dk) ∈ (Dw)k}, and w,w′ ∈ W , w ∈ V (Ad1 . . . dk) and wRw′ imply
w′ ∈ V (Ad1 . . . dk), similarly for f .

For propositional formulas, the satisfaction relation is defined as usual with
clauses for p, f , ⊥, �, ∨,∧,→, where the semantics of f is the same as for the
other propositional variables. For predicate logic only sentences will be evaluated
with clauses for ∀,∃ as e.g. in van Dalen [19]. In the first order case w |= ϕ (and
hence w �|= ϕ) is only defined if the individual constants in ϕ are in Dw. If we
define V on P or At and omit the clause for f , then we get the Kripke semantics
of IPC or IQC; if we omit the clause for ⊥, then we get the Kripke semantics
of MPC or MQC. We use |=I and |=M to distinguish the satisfaction relation of
IQC and MQC, and omit the index when it is not important or clear from the
context.

For IQC, we have the following completeness theorem (see e.g. [2]):

Theorem 1 (Strong Completeness of IQC)
For any set of IQC-sentences Γ and ϕ, Γ IQC ϕ iff Γ |=I ϕ.

By a standard Henkin type completeness proof, we have that MQC is strongly
complete with respect to Kripke models, i.e. for any Γ and ϕ, Γ MPC ϕ iff
Γ |=M ϕ. The proof procedure is essentially the same as the proof for IQC with
respect to Kripke frames, just leave out ⊥ and the accompanying condition that
the members of the model have to be consistent sets (which of course they are).

Theorem 2 (Strong Completeness of MQC)
For any MQC-formulas Γ and ϕ, Γ MQC ϕ iff Γ |=M ϕ.

By a completeness-via-canonicity proof using adequate sets, we have the finite
model property for IPC (again see [2]) and thereby for MPC:

Theorem 3 (Finite Model Property of MPC)
For any MPC-formula ϕ, if �MPC ϕ, then there is a rooted finite Kripke model

M falsifying ϕ.

By the completeness theorem for MQC and IQC, since the semantic behavior of
MQC in the language LM(Q) is exactly the same as that of IQC in the language
LI(Q ∪ {f}) without ⊥ (i.e. the positive [∨,∧,→,�,∀,∃]-fragment L+

I (Q ∪ {f})
of LI(Q ∪ {f})), we can regard MQC as the positive fragment of IQC, and we
have the following lemma:

Lemma 1. For any sentences Γ and ϕ in LM(Q) = L+
I (Q ∪ ({f}), Γ MQC ϕ

iff Γ IQC ϕ.
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This allows us to write ϕ if the index does not matter.
For intermediate logics we sometimes need descriptive frames.

Definition 3. A general frame is a triple F = 〈W,R,P〉, where 〈W,R〉 is a
Kripke frame and P is a family of upward closed sets containing ∅ and closed
under ∩, ∪ and the following operation ⊃: for every X,Y ⊆ W ,

X ⊃ Y = {x ∈ W | ∀y ∈ W (xRy ∧ y ∈ X → y ∈ Y )}

Elements of the set P are called admissible sets.

Definition 4. A general frame F = 〈W,R,P〉 is called refined if for any
x, y ∈ W ,

∀X ∈ P (x ∈ X → y ∈ X) ⇒ xRy.

F is called compact, if for any family Z ⊆ P ∪ {W \ X |X ∈ P} with the
finite intersection property,

⋂
(Z) �= ∅.

Definition 5. A general frame F is called a descriptive frame iff it is refined
and compact.

Intermediate propositional logics are complete with respect to descriptive frames
(see [2]):

Theorem 4. If L is an intermediate propositional logic, then, for all formulas
ϕ, L ϕ iff ϕ is valid in all descriptive frames F that satisfy L.

3 The Top-Model Property

We give a characterization of the ¬,⊥-free formulas of IPC by means of the
following property:

Definition 6 (Top-Model Property)

1. A propositional or predicate Kripke model M = (W,R, V ) is a top model if
it has a largest point t, the top of the model, in which all formulas in P or
At are satisfied.

2. AnymodelM = (W,R, V ) can be turned into its topmodelM+ = (W+, R+, V +)
by adding a node t at the top of themodel, connecting all worldsw to t, andmaking
all atomic sentences true in t. In case of first order logic, Dt =

⋃
w∈W Dw.

3. A formula ϕ has the top-model property, if for all Kripke models M =
(W,R, V ), all w ∈ W , M, w |= ϕ iff M+, w |= ϕ.

Analogously to 1,2 of the above definition we talk about top frames.

Lemma 2. Let t be the top of any top model, and let ϕ be a positive formula
without free variables. Then t |= ϕ.

Proof. Trivial, by induction on the length of ϕ. ��
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For the top-model property we have the following theorem. It was first proved
in [18,21] (see also [15]). We write ϕ ∼ ψ for  ϕ ↔ ψ.

Theorem 5. 1. Every formula in L+
I (P ), L+

I (Q), LM(P ) and LM(Q) has the
top-model property, and so has ⊥.

2. For any formula ϕ in LI(P ), there exists a procedure to produce a formula
ϕ+ in L+

I (P ) or ϕ+ =⊥ such that for any top model M and any node w in
M, we have M, w |= ϕ ↔ ϕ+.

3. For any formula ϕ in LI(Q), there exists a procedure to produce a formula
ϕ+ in L+

I (Q) or ϕ+ =⊥ such that for any top model M and any node w in
M, we have M, w |= ϕ ↔ ϕ+.

4. For any set of formulas Γ in LI(P ) or LI(Q), any top model M and any
node w in M, we have M, w |= Γ iff M, w |= Γ+, where Γ+ = {γ+ | γ ∈ Γ}.

Proof. 1. By induction on the length of the formula ϕ. We just give the inductive
steps for → and ∀. Let t denote the top element of M.

– M, w |= ψ → χ ⇐⇒ in all w′ such that wRw′, if M, w′ |= ψ then M, w′ |= χ
⇐⇒ IH in all w′ ∈ W\{t} such that wRw′, if M+, w′ |= ψ then M+, w′ |= χ
[Now note that since ϕ is positive, and χ is a subformula of ϕ, it must be the
case that χ is positive. Therefore, by Lemma 2, t |= χ] ⇐⇒ in all w′ ∈ W
such that wRw′, if M+, w′ |= ψ then M+, w′ |= χ ⇐⇒ M+, w |= ψ → χ.

– M, w |= ∀zψ(z) ⇐⇒ if wRw′ then M, w′ |= ψ(d) for all d ∈ Dw′ [Now
note that by Lemma 2, t |= ψ(d) for all d ∈ Dt.] ⇐⇒ IH if wRw′ then
M+, w′ |= ψ(d) for all d ∈ Dw′ ⇐⇒ M+, w |= ∀zψ(z).

2 and 3. We obtain ϕ+ from ϕ in stages. That is, ϕ = ϕ0 ��� ϕ1 ��� · · · ���
ϕn = ϕ+. Each stage m starts off with ϕm and produces ϕm+1. The procedure
starts at n = 0.

Stage 2n. Remove all � and ⊥ using the following equivalences:

Remove⊥ Remove�

⊥ ∧ ϕ ∼ ϕ ∧ ⊥ ∼ ⊥ � ∧ ϕ ∼ ϕ ∧ � ∼ ϕ

⊥ ∨ ϕ ∼ ϕ ∨ ⊥ ∼ ϕ � ∨ ϕ ∼ ϕ ∨ � ∼ �
⊥ → ϕ ∼ � � → ϕ ∼ ϕ

ϕ → ⊥ ∼ ¬ϕ ϕ →� ∼ �
¬⊥ ∼ � ¬� ∼ ⊥

This procedure may produce a formula ϕ2n+1 containing neither � nor ⊥.
However, it is also possible that it ends by producing � or ⊥. In the latter two
cases, the theorem is trivial, since in any model M and any world w, M, w |= �
and M, w �|= ⊥, and therefore ⇐⇒ holds. So, in the remainder of this proof we
assume that not ϕ2n+1 = ⊥ and not ϕ2n+1 = �. Note the special feature of the
procedure: a new negation may be produced.
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Stage 2n + 1. Consider the first ¬ in ϕ2n+1 such that ¬ψ is a subformula of
ϕ2n+1 and ψ is positive: that is, ψ does not contain ¬,⊥. This can be done
since all ⊥ were removed in the previous stage. Replace ¬ψ by ⊥. This results
in ϕ2n+2 = ϕ2n+1[⊥/¬ψ], which contains less symbols than ϕ2n+1.

The even stages use logical equivalences, so by definition M+, w |= ϕ2n ⇐⇒
M+, w |= ϕ2n+1 (valuations on M+ are preserved), since for equivalent formulas
this holds for any model.

Next, it has to be shown that also the odd stages preserve valuations on
M+, that is: M+, w |= ϕ2n+1 ⇐⇒ M+, w |= ϕ2n+2 = ϕ2n+1[⊥/¬ψ] for all
n ∈ N. Let ψ = ψ(x1, . . . , xk) and d1, . . . , dk ∈ Dw. Consider the valuation of
ψ(d1, . . . , dk) in top world t. We have chosen ψ positive. Therefore, by Lemma 2,
t |= ψ(d1, . . . , dk). By definition of M+, wRt for all w ∈ W , so for all w ∈ W ,
there is a w′ such that wRw′ and w′ |= ψ(d1, . . . , dk) (namely w′ = t). Therefore,
for all w ∈ W , it must be the case that M+, w �|= ¬ψ(d1, . . . , dk). It can be
concluded by a trivial induction that ϕ2n+1 is equivalent to ϕ2n+1[⊥/¬ψ].

The described procedure will come to an end, since all steps reduce the
number of symbols in the formula. Therefore, there is a final stage, say stage m,
which produces a ϕm+1 that no longer contains ⊥ or ¬. Now define ϕm+1 = ϕ+.
Since both the odd and even stages preserve valuations on M+, we know that
M+, w |= ϕn−1 ⇐⇒ M+, w |= ϕn for all n. By induction, this implies that
M+, w |= ϕ ⇐⇒ M+, w |= ϕ+.

4 follows immediately from 2 and 3. ��
And this theorem leads to the following characterization.

Theorem 6. A formula ϕ of IPC or IQC has the top-model property iff ϕ is
equivalent to a ¬,⊥-free formula (in fact to ϕ+) or to ⊥.

Proof. The direction from right to left is Theorem5.1, so let us prove the other
direction and assume that ϕ has the top-model property, but is not equivalent
to ϕ+. Then there is a model M with a world w so that ϕ and ϕ+ have different
truth values in M, w. Then, because both have the top-model property, ϕ and
ϕ+ have different truth values in M+, w as well. But that contradicts the fact
given by Theorem5 that ϕ and ϕ+ behave identically on top models. ��
Theorem 7. 1. If IPC ϕ, then IPC ϕ+. If IQC ϕ, then IQC ϕ+.
2. Not always IPC ϕ → ϕ+ and not always IPC ϕ+ → ϕ.
3. If ϕ(ψ1, . . . , ψk) arises from the simultaneous substitution of ψ1, . . . , ψk for

p1, . . . , pk in ϕ(p1, . . . , pk), then (ϕ(ψ1, . . . , ψk))+ = (ϕ(ψ+
1 , . . . , ψ+

k ))+.
4. If IPC ϕ → ψ, then IPC ϕ+ → ψ+. If IQC ϕ → ψ, then IQC ϕ+ → ψ+.
5. ϕ+ is unique up to provable equivalence.
6. If IPC ϕ → ψ and ψ is positive, then IPC ϕ+ → ψ. If IQC ϕ → ψ and

ψ is positive, then IQC ϕ+ → ψ. If IPC ψ → ϕ and ψ is positive, then
IPC ψ → ϕ+. If IQC ψ → ϕ and ψ is positive, then IQC ψ → ϕ+.

7. If Γ IPC ϕ and ϕ is positive, then Γ+IPC ϕ, where Γ+ = {γ+ | γ ∈ Γ}.



182 D. de Jongh and Z. Zhao

Proof. 1. Assume not IPC ϕ+. Then M, w exist such that M, w �|= ϕ+. By
Theorem 5.1 also M+, w �|= ϕ+. But then by Theorem5.2, M+, w �|= ϕ, so not
IPC ϕ. Same for IQC.

2. For ϕ = p ∨ ¬p, ϕ+ = p, so �IPC ϕ → ϕ+. For ϕ = ¬¬p, ϕ+ = �, so
�IPC ϕ+ → ϕ.

3. By the fact that the construction of the +-formula in Theorem5 is inside-
out. We can construct (ϕ(ψ1, . . . , ψk))+ by first applying the +-operation to
the formulas ψ1, . . . , ψk in ϕ(ψ1, . . . , ψk) to obtain ϕ(ψ+

1 , . . . , ψ+
k ), and then

continue to work on the remainder to obtain (ϕ(ψ+
1 , . . . , ψ+

k ))+.
4. Suppose IPC ϕ → ψ and �IPC ϕ+ → ψ+, then by the completeness of IPC,

there is a rooted model M with root w such that M, w � ϕ+ and M, w � ψ+.
By Theorem 5.1, M+, w � ϕ+ and M+, w � ψ+. By Theorem 5.2, M+, w � ϕ
and M+, w � ψ, a contradiction to IPC ϕ → ψ. For IQC, the proof is similar.

5. Immediate from 4.
6. From 4.
7. Similar to 4, where the strong completeness is used. ��
Items 5 and 6 give us the right to say that ϕ+ represents the positive content of ϕ.
Item 3 will be used to obtain results on positive formulas proved by intermediate
logics in Sect. 5.

We finally sketch another approach to get to Theorem7.1 the advantage of
which is that it can be transformed into a full proof-theoretic proof. We do not
fully execute this here because of lack of space. The first step is the next theorem
for which we provide here only a semantic proof.

Theorem 8. If ϕ(p1, . . . , pk) is positive and IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ, then
IPC ϕ.

Proof. Asume, ϕ positive, �IPC ϕ. Then for some model M with root r, M, r �|= ϕ.
Hence, by Theorem 5.1, M+, r �|= ϕ. But also, M+, r |= ¬¬(p1 ∧ · · · ∧ pk), so
M+, r �|= ¬¬(p1 ∧ · · · ∧ pk) → ϕ, and finally, �IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ. ��
The next step (which replaces Lemma 2 in this approach) is trivial:

Lemma 3. If ψ(p1, . . . , pk) is positive, then IPC ¬¬(p1 ∧ · · · ∧ pk) → ¬¬ψ.

After this one proceeds to prove Theorem 7.1 as follows. If IPC ϕ, then also
IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ, after which IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ+ follows,
since under the assumption ¬¬(p1∧· · ·∧pk), ϕ and ϕ+ are equivalent by the same
procedure as used in the proof of Theorem5.2, using the just stated lemma on the
way when we replace ¬ψ by ⊥. Finally, we can conclude  ϕ+ by Theorem 8. For
first order logic this approach works as well when one replaces ¬¬(p1 ∧ · · · ∧ pk)
by ¬¬∀x(A1 ∧ · · · ∧ Ak).

4 Uniform Interpolation

In this section we prove a revised version of the uniform interpolation theorem
for the positive fragment of IPC and for MPC, using the uniform interpolation
theorem of IPC and the top-model property.
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First of all we state the uniform interpolation theorem of IPC. We formulate
the theorem for formulas ϕ(p, q) and ψ(p, r) with one variable q and r in addition
to the common ones p; the more general case with q and r then follows by
repeated application.

Theorem 9 (Uniform Interpolation Theorem of IPC)

1. For any formula ϕ(p, q) in which q is not a member of p, there is a formula
χ(p), the uniform post-interpolant for ϕ(p, q), such that
(a) IPCϕ(p, q) → χ(p),
(b) For any ψ(p, r) where r and p, q are disjoint, if IPC ϕ(p, q) → ψ(p, r),

then IPCχ(p) → ψ(p, r).
2. For any formula ψ(p, r) in which r is not a member of p, there is a formula

χ(p), the uniform pre-interpolant for ψ(p, r), such that
(a) IPCχ(p) → ψ(p, r),
(b) For any ϕ(p, q) where q and p, r are disjoint, if IPC ϕ(p, q) → ψ(p, r),

then IPCϕ(p, q) → χ(p).

This theorem is proved in [14] by a proof-theoretical method and in [8] by the
bisimulation quantifier method. In accordance with the latter we write ∃q ϕ(p, q)
for the post-interpolant and ∀r ψ(p, r) for the pre-interpolant.

For the positive fragment, we first treat the post-interpolant. There is a
complication in the case of the pre-interpolant.

Theorem 10 (Uniform Interpolation Theorem for the positive frag-
ment of IPC, post-interpolant)

For any positive formula ϕ(p, q) in which q is not a member of p, there is a
positive formula θ(p) such that

1. IPC ϕ(p, q) → θ(p),
2. For any positive ψ(p, r) where r and p, q are disjoint, if IPC ϕ(p, q) →

ψ(p, r), then IPC θ(p) → ψ(p, r). Moreover, θ(p) is (∃q ϕ)+, where ∃q ϕ is
the uniform post-interpolant for ϕ in full IPC.

Proof. 1. By Theorem 9.1(a), IPC ϕ(p, q) → ∃q ϕ(p, q). As ϕ(p, q) is positive,
by Theorem 7.6, IPC ϕ(p, q) → (∃q ϕ(p, q))+. Note that, since ϕ(p, q) is
satisfiable (it is positive!), (∃q ϕ(p, q))+ cannot be ⊥ and hence is positive.

2. By Theorem 9.1(b), IPC ∃q ϕ(p, q)→ ψ(p, r). As ψ(p, r) is positive, by
Theorem 7.6, IPC (∃q ϕ(p, q))+→ ψ(p, r). ��

This result is not trivial. The post-interpolant of (p → q) → p in full IPC is ¬¬p.
In the positive fragment it is (¬¬p)+ = �.

For the pre-interpolant the situation is more complex. For example, ∀r. p →
r is ¬p and that is (up to equivalence) the only formula in p without r to
imply p → r, and therefore no pre-interpolant for p → r exists in the positive
fragment. Actually, this is not a real surprise since in classical propositional
logic the situation is the same. However, in a way this is the only failure of the
theorem; pre-interpolants exist as long as we just consider positive formulas that
are implied by at least one positive one not containing the quantified variables.
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Theorem 11. (Uniform Interpolation Theorem for the positive frag-
ment of IPC, pre-interpolant)

For any positive formula ψ(p, r) in which r is not in p, one of the following
two cases holds:

1. There is a positive formula θ(p), the uniform pre-interpolant for ψ(p, r), such
that
(a) IPC θ(p) → ψ(p, r),
(b) For any ϕ(p, q) where q and p, r are disjoint, if IPC ϕ(p, q) → ψ(p, r),

then IPCϕ(p, q) → θ(p). Moreover, θ(p) is (∀r ψ)+.
2. For any positive θ(p, q) where q and p, r are disjoint, �IPC θ(p, q) → ψ(p, r).

Proof. 1(a). By Theorem 9.2(a), IPC ∀r ψ(p, r) → ψ(p, r). As ψ(p, r) is positive,
by Theorem 7.6, IPC (∀r ψ(p, r))+→ ψ(p, r). The case that (∀r ψ(p, r))+ =
⊥ will be treated under 2. In the other cases, we are done.

1(b). By Theorem 9.2(b), IPC ϕ(p, q) → ∀r ψ(p, r). As ϕ(p, q) is positive, by
Theorem 7.6, IPCϕ(p, q) → (∀r ψ(p, r))+.

2. If IPC θ(p, q)→ ψ(p, r), then, by 1(b), IPC θ(p, q)→ (∀r ψ(p, r))+. This
means that, if (∀r ψ(p, r))+ = ⊥, θ(p, q) cannot be positive, since positive
formulas are satisfiable. ��

Again, the result is not trivial. The pre-interpolant of ((p → q) → p) → p in the
full logic is ¬¬p → p. In the positive fragment it is (¬¬p → p)+ = p. Uniform
interpolation for MPC immediately follows.

Corollary 1 (Uniform Interpolation Theorem for MPC)

1. For any formula ϕ(p, q) of MPC in which q is not a member of p, and p, q may
contain f , MPCϕ(p, q)→ (∃q ϕ(p, q))+, and for any positive ψ(p, r) where r
and p, q are disjoint, if MPCϕ(p, q) → ψ(p, r), then
MPC (∃q ϕ(p, q))+→ ψ(p, r).

2. For MPC-formula ψ(p, r) in which r is not a member of p one of the following
two cases holds:
(a) (∀rϕ(p, r))+ is an MPC-formula, MPC (∀r ϕ(p, r))+ → ψ(p, r), and for

any ϕ(p, q) where q and p, r are disjoint, if MPCϕ(p, q) → ψ(p, r), then
MPC ϕ(p, q) → (∀r ψ(p, r))+.

(b) For any MPC-formula ϕ(p, q) where q and p, r are disjoint, �MPC ϕ(p, q)
→ ψ(p, r).

This means that in MPC the uniform post-interpolant exists for any formula,
and the uniform pre-interpolant exists for any formula that is implied by at
least one formula with the right variables. The result stands if instead of the
formulation of the syntax with the additional variable f one chooses to formulate
MPC with ¬. In itself this is not remarkable, but there is a stark contrast with
full IPC, in which as we have seen, uniform interpolants of positive formulas may
need ¬.

We do not obtain uniform interpolation for the positive fragment of IQC since
it does not even hold for IQC itself (see e.g. [20]). But simple interpolation for
the positive fragment of IQC immediately follows from the usual proofs of simple
interpolation in IQC itself.
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5 Relationship with KC and Other Logics

5.1 Propositional Case

We consider intermediate propositional and predicate logics, logics between IPC
and classical logic. We assume they are given by axiomatizations plus the rules
of substitution and modus ponens. We first show that to derive positive formulas
just positive substitutions in the axioms and the +-operation nearly suffice. This
is the basic theorem of this section.

Theorem 12. If L is an intermediate logic, ϕ is positive and L  ϕ, then there
are axioms α0(p0, . . . , pn0), . . . , αk(p0, . . . , pnk

) of L and formulas ψ00, . . . , ψ0n0 ,
. . . , ψk0, . . . , ψknk

, which are positive or ⊥, such that ϕ is derivable in IPC, resp.
IQC, from (α0(ψ00, . . . , ψ0n0))

+, . . . , (αk(ψk0, . . . , ψknk
))+.

Proof. If L  ϕ, then there are axioms α0(p0, . . . , pn0), . . . , αk(p0, . . . , pnk
) of L

and formulas θ00, . . . , θ0n0 , . . . , θk0, . . . , θknk
such that ϕ is derivable in IPC or

IQC from α0(θ00, . . . , θ0n0), . . . , αk(θk0, . . . , θknk
). By Theorem 7.7, ϕ is deriv-

able in IPC or IQC from (α0(θ00, . . . , θ0n0))
+, . . . , (αk(θk0, . . . , θknk

))+. Then, by
Theorem 7.3, ϕ is derivable in IPC or IQC from (α0(θ+00, . . . , θ+0n0

))+, . . . , (αk(θ+k0,
. . . , θ+knk

))+. Now ψ00, . . . , ψ0n0 , . . . , ψk0, . . . , ψknk
can be taken to be θ+00, . . . ,

θ+0n0
, . . . , θ+k0, . . . , θ+knk

. ��

The reader should note that in the above proof the formulas (α0(θ+00, . . . ,
θ+0n0

))+, . . . , (αk(θ+k0, . . . , θ
+
knk

))+ may not be derivable in L itself. Nevertheless,
the theorem turns out to be very useful.

It is well-known that KC is conservative over the positive fragment of IPC
(see [2]). This now follows directly.

Theorem 13. If ϕ is positive, then IPC ϕ ⇐⇒ KC ϕ.

Proof. Let us just prove the non-trivial direction. Assume KC ϕ and ϕ is pos-
itive. Then, by Theorem12, ϕ is a consequence in IPC of some formulas of the
form (¬ψ ∨ ¬¬ψ)+ with ψ positive or ⊥. Since (¬ψ ∨ ¬¬ψ)+ ∼ ⊥ ∨ � ∼ �
or ∼ � ∨ ⊥ ∼ � (depending on whether ψ is positive or ⊥) , this implies that
IPC ϕ. ��
An immediate consequence is:

Corollary 2. If ϕ and ψ are positive and KC ϕ ∨ ψ, then KC ϕ or KC ψ.

By a slightly more complicated argument, using that KC can be axiomatized by
¬p ∨ ¬¬p for all atoms p, uniform interpolation for KC follows.

Theorem 13 can be generalized in three directions. In the first place, Jankov’s
Theorem [11] states that KC is the strongest intermediate logic with this prop-
erty. A frame-theoretic proof was given in [3], followed by a simpler approach
in [18]. Secondly, there are generalizations to predicate logic, which we will dis-
cuss in the next subsection. Finally, as discussed to a certain extent in [3], the



186 D. de Jongh and Z. Zhao

corollary can be strengthened by considering the relationship of KC with other
intermediate logics. It turns out that for many such logics Theorem13 gener-
alizes. So, we turn to the question for which intermediate logics L, KC +L is
conservative over L with respect to positive formulas. The next example shows
that this is not so for all such logics.

Example 1. BD2 + KC is not conservative over the positive fragment of BD2, the
logic of the frames bounded to depth 2 (see [2])2.

Proof. The logic BD2 is often axiomatized by p ∨ (p → q ∨ ¬q), but can be
axiomatized positively e.g. by ((p → (((q → r) → q) → q)) → p) → p. BD2 + KC
contains LC, Dummett’s logic. This logic is axiomatized by the positive for-
mula (p → q) ∨ (q → p) (expressing linearity of frames), which is not provable
in BD2. ��
Definition 7. An intermediate logic L has the + -property, if, whenever L ϕ,
also L ϕ+.

Theorem 14. If L is an intermediate propositional logic axiomatized over IPC
that has the +-property and ϕ is positive, then IPC+L ϕ iff KC+L ϕ.

Proof. Assume KC+L ϕ and ϕ is positive. Then, by Theorem12, ϕ is a conse-
quence in IPC from some formulas of the form (¬ψ ∨ ¬¬ψ)+ and some formulas
α+
0 , . . . , α

+
k , where α0, . . . , αk are L-axioms. The formulas (¬ψ ∨ ¬¬ψ)+ can be

treated as in the proof of Theorem13. The L-axioms are provable in L, and by
the +-property, so are their +-formulas. ��
Theorem 15. If L is an intermediate propositional logic that is complete with
respect to a class of frames that is closed under the operation that turns a frame
into its top frame, then L has the + -property.

Proof. Repeat the proof of Theorem7.1. ��
The last two theorems immediately lead to

Theorem 16. If L is an intermediate propositional logic that is complete with
respect to a class of frames that is closed under the operation that turns a frame
into its top frame, then, for positive ϕ, IPC+L ϕ iff KC+L ϕ.

To give a semantic characterization of the +-property of logics we need descrip-
tive frames. First we give a lemma.

Lemma 4. If F= 〈W,R,P〉 is a descriptive frame, then so is F+ = 〈W ∪{t}, R+,
P+〉, if P+ = {X ∪ {t} |X ∈ P} ∪ {∅}.
Proof. Straightforward. ��
A semantic characterization of the + -operation for intermediate logics can then
be given as follows (simultaneously strengthening Theorem 15).
2 A Kripke frame is of depth n if the largest chain contains n nodes.
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Theorem 17. An intermediate logic L has the + -property iff, for each descrip-
tive frame F of L, F+ is a descriptive L-frame as well.

Proof. ⇐: Again like Theorem7.1.
⇒: Assume F is a descriptive L-frame, but F+ is not. Then, for some ϕ, L ϕ

but there exists a model N on F+ that falsifies ϕ. If this is not a top model, then
some propositional variables are false in the top node. This means that they are
false in the whole model and can be replaced by ⊥ without influencing the truth
value of any relevant formula. So, the formula ϕ⊥ resulting from the substitution
of ⊥ for the propositional variables in question is still falsified. Moreover, ϕ⊥ is
provable in L as well.

So, w.l.o.g. we can assume that N is a top model M+ falsifying ϕ. Then M+

falsifies ϕ+ as well, and hence also M falsifies ϕ+. But that means that �L ϕ+,
and hence that L does not have the +-property. ��
Unfortunately, the theorem has not yet been of much practical value to determine
for which logics L, IPC+L and KC+L prove the same positive formulas. But it
does enable us to see that the +-property is not necessary.

Example 2. The finite Gödel-Dummett logics LCn with linear orders of length
n as their characteristic frames, extend KC, and therefore satisfy LCn  ϕ ⇔
KC+LCn  ϕ for even all formulas. But by Theorem17, they lack the +-property
because, clearly, their class of frames is not closed under the +-operation.

We could conclude here by applying Theorem15 that the tree logics Tn of [6] do
satisfy the +-property, but we prefer to give a more satisfying proof applicable
to first-order logic in the next section.

5.2 First Order Case

Let QKC be IQC plus KC. Theorem 13 can be directly, with the same proof,
generalized to

Theorem 18. If ϕ is positive, then IQC ϕ iff QKC ϕ.

This can further be strengthened by adding DNS (Double Negation Shift), axiom-
atized by ∀x¬¬Ax → ¬¬∀xAx, to QKC. Just as QKC the logic DNS is always
valid on top models, and, in the proof of Theorem13, applying the +-operation
in the same way turns this axiom into � when a positive formula or ⊥ is sub-
stituted for Ax. So, we get

Theorem 19. If ϕ is positive, then IQC ϕ ⇐⇒ QKC+DNS ϕ.

In predicate logic we have of course the same propositional intermediate logics
with positive axioms to strengthen IQC. Let us take a look at the Tn.

Lemma 5. IQC + Tn has the +-property.
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Proof. We can apply Theorem 12. It is easy to check that the form of the Tn-
axioms,

∧n
i=0((pi → ∨

j �=i pj) → ∨
j �=i pj) → ∨n

i=0 pi, is such that substitution
of ⊥ for an atom in one of these axioms gives a formula provable in IPC itself. ��
We can now immediately conclude:

Corollary 3. QKC + Tn is conservative over the positive fragment of IQC + Tn.

Proof. Assisted by the proof of the last lemma we can follow the line of the proof
of Theorem 13. ��
There is another very important logic with positive axioms, the logic CD, axiom-
atized by ∀x(A ∨ B(x)) → A ∨ ∀xB(x) and known to be complete with respect
to Kripke models with constant domains (see [7]). Results apply here because,
if M |= CD, then M+ |= CD, since the domain of the top point is the union of
all the domains of M, and thus the same domain as the other worlds of M.

Corollary 4. Assume ϕ is positive. Then IQC+CD ϕ ⇐⇒ QKC+CD+DNS ϕ.

The same results as for IQC + CD hold for the logic axiomatized by ∀x, y
(Px → Py), the logic for constant domains consisting of a single element. Actu-
ally, this is not an intermediate logic of course, it is not contained in classical
logic, and more properly called a superintuitionistic logic.
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Until and unless you discover that money is the root of all good,
you ask for your own destruction.

—Ayn Rand, Atlas Shrugged

Abstract. The analyses of unless and until lie at the intersection of
logic and linguistics. They crop up in papers about tense connectives [1],
quantification [15], anaphora [7], polarity and duality [17,18] and in clas-
sical theorems of tense logic [10]. Unless and until are morphologically
similar, and in some contexts, they even appear to be ‘interchangeable’.
In this paper we give compositional analyses showing the interrelatedness
of these two connectives. In addition, we use this case study to draw some
broader methodological points. The locus classicus on the logic of unless
is Quine’s Elementary Logic [20] where he sets forth three methodological
dogmas. We dub these Quine’s Three Dogmas of Linguistic Negativism
and argue that these three dogmas not only give a misleading account of
the interplay between logic and linguistics but that rejecting them leads
to discovering a unified compositional analysis.

Keywords: Unless · Until · Quine’s dogmas · Quantifier restriction ·
Modal tense operators · Punctual and durative until

1 Introduction

The proper analysis of unless lies at the intersection of logic and linguistics. It
crops up, for example, in papers about tense connectives [1], quantification [15],
and anaphora [7].1 Chandler [1] and von Fintel [4] argue that unless should not
be treated as a truth-functional connective. Rather, due to the non-equivalence
of (1-a) and (1-b), Chandler argues that unless should be regarded as a tense
connective when it connects sentences describing events that occur at different
times:
1 Here and throughout the paper we use colored fonts to make our analyses more

perspicuous. Our convention is that occurrences of unless and if are blue, occurrences
of quantifiers and later occurrences of until and temporal particles or operators are
green, negative elements are red, and other colors such as orange and purple highlight
other features.
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(1) a. Willard will die unless he is operated on;
b. Willard will be operated on unless he dies.

Furthermore, unless interacts with anaphoric reference in such constructions as

(2) Peter doesn’t own a donkey, unless he is hiding it well,

where the pronoun ‘it ’ appears to refer to a (possibly) non-existent donkey.
Not only do unless and until appear to be morphologically similar, but, in

some contexts, they even appear ‘interchangeable’:2,3

(3) I will not leave unless/until you have a replacement.

To our knowledge, no one has combined unless and until in a formal composi-
tional analysis, which is a goal of this paper.

Our goal, however, is not simply to give a compositional analysis. We wish
to use this case study to draw some broader methodological lessons about the
intersection of logic and linguistics. The locus classicus of the logician’s discus-
sion of unless is Quine’s Elementary Logic [20], in which Quine sets forth, or at
least implicitly assumes, three methodological principles. We dub these ‘Quine’s
three dogmas of linguistic negativism’ alluding to Quine’s famous “Two Dog-
mas of Empiricism”[21].4 Whether or not our particular, provisional, analysis
can withstand all counterexamples, we wish to argue that Quine’s methodolog-
ical dogmas, like Quine’s famous attack on the dogmas of logical empiricism,
2 Although they appear interchangeable, there are differences. Unless supports infer-

ences of uncertainty whereas until need not. If I say, “I’ll stay unless you have a
replacement”, this often implies that I’m uncertain whether you have a replacement
or not. However, if I say, “I won’t leave until you have a replacement” it might be
the case that I know you will have a replacement in the near future and that I’m
postponing my leaving until that happens.

3 Similar linguistic phenomena occur in other languages (e.g., Russian):

(i) Ja
I

budu
will

žit’
live

na
on

Long
Long

Islande
Island

esli
if

ja
I

ne/poka
NEG/until

ja
I

ne
NEG

najdu
find

kvartiru
apartment

v
in

gorode
city
“I will live on Long Island, unless/until I find an apartment in the city.”
(Russian)

The translation for unless in Russian is literally if not, drawing a suggestive cross-
linguistic parallel.

4 The terminology of ‘negativism’ is adapted from Hao Wang’s [22] characterization
of Quine’s philosophical views as logical negativism. Not only are Quine’s theses
largely negative—the rejection of analyticity, the indeterminacy of translation, the
view that modal logic is ‘conceived in sin’—but also they have been negative in
their influence. “... [Both] Carnap and Quine have inadequate conceptions of logic
and apply logic in philosophy in misleading manners, which do not do justice to
logic in its more developed state and, through the conspicuity of their work, give to
philosophers the wrong ideas about logic.” [22]
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have hindered more than helped the development of a more constructive and
collaborative view of the interplay between logic and linguistics. It turns out, in
fact, that questioning Quine’s three dogmas leads to a unified, systematic, and
perhaps even elegant compositional analysis of unless and until.

The structure of our paper is philosophical, but the arguments, for the most
part, appeal to linguistic intuitions and data. In Sect. 1 we set forth the question
to be investigated. Next in Sect. 2, we consider objections to our position—
objections are not set forth as opinions or alternative positions, but as argu-
ments. In Sect. 3, we present our proposal analyzing unless in terms of if not,
where the negation expresses exceptional circumstances introduced by the rele-
vant situations introduced by if. In Sect. 4, we formally characterize our proposal
to extend this analysis of unless to until using temporal modal operators and
temporal particles. In Sect. 5 we compare and contrast our proposal with other
influential accounts, and then in Sect. 6 we summarize our conclusions and views
about the relation between logic and linguistics.

2 Three Objections

Any compositional analysis of unless as if not (which is tautologically equivalent
to the logician’s inclusive or) or as if and only if not (which is tautologically
equivalent to the logician’s exclusive or) faces at least three objections.5

2.1 Objection 1: An Analysis of Unless as If Not is Logically
Redundant

Quine [20] has already argued that unless is correctly paraphrased by the logi-
cian’s or, and the logician’s or is tautologically equivalent to if not. Therefore,
so the objection goes, our analysis of unless as equivalent to if not is logically
redundant. For Quine the following are all intuitively equivalent:

(4) a. Smith will sell unless he hears from you;
b. Either Smith hears from you or he will sell;
c. If Smith does not hear from you, he will sell.

Quine notes that unless appears to share the ambiguity of the inclusive and
exclusive senses of or, and he counts this as evidence for the correctness of his
analysis. In Quine’s example above, or is inclusive: it could be the case that
Smith hears from you, but still sells to the highest bidder because your offer is
not enough. Quine’s recommendation is, that “it will be convenient to dodge the
existing ambiguity of usage by agreeing in general to understand unless in the
inclusive sense.” [20]

5 We are grateful for a reviewer for calling our attention to the myth of vel and
aut at http://plato.stanford.edu/entries/disjunction/#MytVelAut. Commutativity
holds for the logician’s or in either the inclusive or exclusive senses.

http://plato.stanford.edu/entries/disjunction/#MytVelAut
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2.2 Objection 2: An Analysis of Unless as If Not Fails to Explain
Negative Polarity and Negative Affixation

Negative Polarity Items (NPIs) are lexical items that appear in negative contexts.
An environment with if not licenses NPIs, such as any, but an environment with
unless does not.

(5) a. If you don’t do anything, you’ll never get anywhere;
b. *Unless you do anything, you’ll never get anywhere.6

Thus, an analysis of unless as if not fails to explain why morphologically
incorporated negative prefixes (negative affixation), such as un-, do not license
NPIs.

2.3 Objection 3: Analyzing Until in terms of Unless Fails
to Distinguish Processes and Propositions

Any analysis which proposes building a compositional analysis of until from
unless using temporal particles and parameters cannot possibly succeed because
unless connects sentences that express propositions or states of affairs whereas
until connects descriptions of processes, activities or states.

Consider the following:

(6) a. The baby didn’t sleep until 2 a.m.;
b. *The baby didn’t sleep unless (it is) 2 a.m.;
c. ?If (it is) not 2 a.m., then the baby didn’t sleep.

Quine famously objected to modal logic as “conceived in sin”, the sin of confusing
use and mention: how can implies, which connects names of statements, be
analyzed in terms of if . . . then. . . which connects statements. In a similar fashion,
one might object that since unless connects propositions but until connects
descriptions of processes, events or states, the latter cannot be analyzed in terms
of the former. Löbner [16] puts this point succinctly: events do not possess a
negation as a contrary—“a storm is an event, but there are no non-storms.”

These three objections appear to question the need for a compositional alter-
native to Quine’s analysis of unless and to provide a conclusive case against the
very possibility of analyzing until in terms of unless.

3 Our Proposal

Despite these seemingly powerful objections, we shall argue that

1. unless, while not simply replaceable by if not, is better analyzed composition-
ally in terms of the logical contributions of if and not, rather than by the
logician’s or ;7

6 In this paper we use the following linguistic conventions: * = ungrammatical, ? =
questionable/degraded, # = infelicious.

7 Section 3.7 expands on the notion that unless is not simply replaceable by if not.
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2. the NPI and Negative Affixation objections strengthen, rather than weaken,
our argument;

3. there is an elegant compositional analysis of until in terms of unless using
temporal frame semantics with tense operators and temporal particles.

3.1 Quine’s Three Dogmas of Linguistic Negativism

Consider again the locus classicus of the logician’s analysis of unless, Quine’s
Elementary Logic [20], which we quote in three sections:

‘Unless’ thus seems to answer to ‘or’; and it seems even to share the
ambiguity of ‘or’, as between the inclusive and the exclusive sense. In
either sense, ‘unless’ can be eliminated in favor of conjunction and denial;
for we have seen (Sect. 5) how to eliminate ‘or’ in either of its senses.
But in practicing with examples it will be convenient, as in the case of
‘or’ (cf. Sect. 5), to dodge the existing ambiguity of usage by agreeing in
general to understand ‘unless’ in the inclusive sense.

Between ‘unless’ and ‘or’ there is doubtless a rhetorical difference,
such as was observed between ‘but’ and ‘and’. Perhaps we tend to pre-
fer ‘unless’ to ‘or’ when we feel that the first of the two component
statements deserves more emphasis than the second, or that the first
component is more likely to be true than the second.

[One should ignore] a minor grammatical difference between ‘unless’
and ‘or’ as applied to futures...In logical analysis...it is simplest to sweep
away any special problems of tense by pretending that differences of time
are recorded solely through explicit mention of epochs. [20]

In these passages, Quine lays down methodological dicta, which we shall call
Quine’s Three Dogmas of Linguistic Negativism. Quine’s First Dogma is a plea
for preferential treatment: he recommends that we “dodge the existing ambiguity
of usage by agreeing in general to understand ‘unless’ in the inclusive sense.”
Quine’s Second Dogma is to relegate differences with respect to topic to rhetoric:
he claims that differences between‘unless’ and ‘or’ can attributed to “a rhetorical
difference, such as was observed between ‘but’ and ‘and’.” Finally, Quine’s Third
Dogma recommends we adopt the pretense of tenselessness: he recommends that
we ignore “a minor grammatical difference between ‘unless’ and ‘or’ as applied to
futures...”. “In logical analysis,” Quine proclaims, “it is simplest to sweep away
any special problems of tense by pretending that differences of time are recorded
solely through explicit mention of epochs.” We wish to show that rejecting each of
Quine’s dogmas can lead to the discovery of a more accurate, and systematically
unified, analysis of unless and until.

Quine’s analysis of unless seems to be based on an assumption that comes
naturally to logicians, but which is anathema to linguists—namely, the assump-
tion that simple chains of natural equivalences of propositional logic preserve
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linguistic meaning.8 Quine’s argument appears to be something like the follow-
ing. Suppose you are deciding whether to make an offer on Smith’s house, and
the broker tells you,

(7) Smith will sell unless he hears from you.

Now the above statement in (7) can be paraphrased by

(8) If Smith does not hear from you, he will sell.

But the latter is tautologically equivalent, by contraposition (CP) to

(9) If Smith won’t sell, then Smith did hear from you,

which, in turn, is tautologically equivalent by conditional/disjunction (CDJ) to:

(10) Smith will sell or he hears from you.

Therefore, Quine concludes, unless is equivalent to the logician’s or. We shall dub
this argument ‘Quine’s Quagmire’ not only because of the dubious assumptions
upon which it is based but also because these assumptions commit Quine to a
quagmire of deviant (#) and questionable (?) paraphrases. The first tautological
equivalence preserves linguistic meaning:

(11) a. Unless Smith hears from you, he will sell;
b. = If Smith does not hear from you, he will sell;

but the following do not:

(12) a. ?Either Smith will sell or he hears from you;
b. #If Smith will not sell, then Smith hears from you;
c. ?Smith will sell or he hears from you;
d. *Smith hears from you unless he will sell.9,10

Questioning the validity of Quine’s Quagmire blocks a false prediction of
Quine’s analysis, namely, the commutativity of unless:

(13) a. I wont leave unless you have a replacement;
b. �= ?You have a replacement unless I won’t leave.

Our analysis will explain when and why unless statements fail to commute.
8 This restriction to “simple chains of natural equivalences” is to avoid unwanted

implications, for instance, that “all tautologies say that same thing.”
9 Quine’s dogmas also commit him to the dubious claim that ‘P unless Q’ is equivalent

to ‘not-P only if Q’, which yields the (even more) deviant paraphrase: #Smith does
not hear from you only if he will sell.

10 Here and subsequently the natural deduction system and theorems refer to Kalish,
Montague and Mar [9]. The practice of placing two spaces at the end of displayed
sentences before including punctuation marks, which integrate the displays into the
text follows, is the convention of Kalish and Montague.
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3.2 Argument 1: Non-Commutativity

Our first argument against Quine’s analysis—and our reply to the redundancy
objection—is simple: the logician’s inclusive or and exclusive or are both com-
mutative but unless is typically non-commutative.

This reply dodges Quine’s dogma of preferential treatment. Quine’s prescrip-
tion to prefer the inclusive or over the exclusive or as a paraphrase of unless is
moot: neither alternative explains why unless is non-commutative.

(14) a. Smith will sell unless he hears from you;
b. �= *Smith hears from you unless he will sell;

(15) a. Mary will arrive at 10:30 a.m. unless the plane is late;
b. �= ?The plane is late unless Mary will arrive at 10:30 a.m..

An analysis due to Geis gives a persuasive explanation of when and why
contraposition fails [5]. Consider the following intuitively equivalent paraphrases:

(16) a. I won’t leave unless you have someone to take my place;
b. = If you don’t have someone to take my place, I won’t leave;
c. = I will leave only if you have someone to take my place.

According to Quine’s dictum, if is a sign of the antecedent whereas only if is
a sign of the consequent. If Quine’s dictum is valid, then the third paraphrase
should be equivalent to:

(17) ?If I will leave, then you have someone to take my place.

Contrary to Quine’s dictum, the correct analysis of only if is compositional: if
introduces the antecedent, whereas only is a sign of negation distributed over
the antecedent and consequent. This analysis yields, not Quine’s questionable
paraphrase in (17), but its contrapositive in (16-b).

The correct paraphrases in (16-b) and (16-c) of (16-a) state that a necessary
condition for my leaving is that you have a suitable replacement. The question-
able paraphrase in (17) incorrectly suggests either that my leaving is a sufficient
condition for your having a replacement or that my leaving makes it necessary
that there’s someone to take my place.

According to analyses of if as a quantification, or domain, restrictor (cf.
[4,5,13,14]), the if clause in English sentences quantifies over an implicit restric-
ted range of contextually relevant cases. Whereas the logician’s truth-functional
conditional is restricted to actual cases, conditional clauses in English restrict
quantifiers to range over a set of relevant set of possibilities: if in English means
something like “in (all relevant) cases in which”. Quantificational restriction
explains why the logician’s rule of contraposition fails to preserve equivalence in
English.

The topic, or range of relevant circumstances introduced by if, in the con-
ditional in (16-b) is different from the topic of its contrapositive (17): the for-
mer conditional is about my giving you the time to find a suitable replacement,
whereas the latter contrapositive is about your having someone waiting to take
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my job if I leave. What is essential for our proposal is that our compositional
analysis of unless as if not gives a domain restricting role to if which is lacking
in the case of or. Our analysis casts doubt on Quine’s second dogma: the shift
in topic is not merely rhetorical but logical, affecting the validity of such logical
transformations as CP and CDJ.

The suggestive occurrence of less in unless provides further evidence for our
compositional analysis. The OED entry for unless states that unless derives
from a contraction of under lesser cases, or according to other etymologies on
a less condition (than). So the un- in unless comes from the preposition on,
rather than an explicitly negative prefix. On the other hand, on a lesser or
lower condition contains the lingering presence of a negative.11 This intriguing
historical fact about (a diachronic version of) English supports our attempt to
understand the semantics of unless by deriving it from if not. Our emphasis on
a shift in topic picked out by restrictive role of if is historically embedded in
the distinction between a lesser condition and the greater or main condition.
This domain restricting role for if is required not only to capture the distinction
between necessary and sufficient conditions but also to explain why and when
CP and CDJ fail to preserve linguistic equivalence in English.12

Quine’s third dogma, the pretense of tenselessness, continues to generate
questionable paraphrases:

(18) a. Unless Smith hears from you, he will sell;
b. *Smith hears from you unless he will sell;
c. ?If Smith will not sell, then Smith hears from you.

From an intuitive causal/temporal point of view, the tenses in (18-b) and (18-c)
are backward: they appear to assert that your failing to call Smith now or in the
near future is either a necessary condition or a causal consequence of Smith’s
failing to sell in the future. This violates our intuitive conception of time: an event
in the future cannot cause what is happening now. Now, Quine admits that it is
more natural to alter the verb tenses in the second questionable paraphrase as
follows:

(19) If Smith didn’t sell, then he (must have) heard from you.

Here we have changed the tense of the antecedent from the future to the past and
the tense of the consequent from the present to the past or past perfect tense.

Rather than subscribing to Quine’s third dogma of “sweep[ing] away any
special problems of tense,” our analysis will focus on how tense and temporal
11 It turns out that this observation of ours was made independently and, more insight-

fully, by von Fintel [4].
12 Within the realm of mathematics the relevant cases are intuitively ‘universal’ and

‘timeless’, and so the logician’s classical transformations preserve equivalence of all
of the following: (i) If a natural number is evenly divisible by 2, then it is even; (ii)
If a natural number is not even, then it is not evenly divisible by 2; (iii) Unless
a natural number is even, it is not evenly divisible by 2; (iv) A natural number is
evenly divisible by 2 only if it is even.



198 G. Mar et al.

particles interact with other elements of meaning to arrive at a compositional
account of until from our compositional account of unless.

To summarize, Quine’s Quagmire depends on the fallacious assumption that
the logician’s equivalences always preserve linguistic meaning. This natural, but
false, assumption leads Quine to dismiss, through his dogmas, other elements of
linguistic meaning that may affect the validity of these transformations. In con-
trast, by adopting Geis’s analysis of if as specifying the relevant cases in which
the consequent condition holds, we can explain why ‘P unless Q’ is not accu-
rately paraphrased by ‘P or Q’. Quine’s paraphrase loses the non-commutativity
of unless imposed by if. Our analysis of unless as if not, in contrast, can explain
the non-commutativity of unless in terms of the failure of contraposition. The
antecedent condition introduced by if ranges over, or restricts, the relevant cases
or lesser conditions under which the condition expressed in the consequent (the
topic of the conditional) may or may not obtain.

Combining our analysis of unless as if not together with Geis’s explana-
tion of the failure of contraposition therefore gives an explanation for when and
why commutativity, which holds for the logician’s or in either the inclusive or
exclusive senses, often fails for unless.13

3.3 Argument 2: Failed Predictions About Factoring

Quine’s analysis of unless as the logicians ‘∨’ gives false predictions about fac-
toring. In particular, it predicts that the sentence in (20) is equivalent to (21):

(20) I will go to the party, unless John does or Mary doesn’t,

(21) (G ∨ J ∨ ∼M)

The latter (21) may be translated as

(22) I go to the party, or John goes to the party, or Mary doesn’t go to the
party,

13 Our analysis may even be useful to explain some occurrences of a non-commuting or.
Consider the famous declaration by the American patriot Patrick Henry: “Give me
liberty or give me death” (we are indebted to Gillon [7] for this example). Whether
or not this declaration was intended as inclusive or exclusive (perhaps Henry invites
the liberty of death if he can’t have the liberty in life), Henry’s defiant disjunction
is not intuitively equivalent to: “Give me death or give me liberty”. Our analysis
suggests that non-commuting occurrences of or can be paraphrased by a fronted
unless:

i. Unless you give me liberty, give me death;
ii. If you don’t give me liberty, then give me death.

Then the exceptional cases of the non-commutativity of or can be explained by the
non-commutativity of the fronted unless which, in turn, is explained by the failure
of contraposition: the cases in which Patrick Henry is not granted his liberty are
different from the cases in which he is not given death.
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which is clearly not equivalent to the original sentence. Instead, the original
sentence is equivalent to:

(23) I will go to the party unless John goes, and I will go to the party unless
Mary doesn’t.

Our paraphrase in (23) can be symbolized and translated, respectively, by:

(24) (∼J → G) ∧ (M → G)

(25) I will go to the party if John doesn’t go, and I will go to the party if
Mary does go.

Our analysis, in fact, allows us to demonstrate that (26-a)-(26-c) are equivalent,
using the theorem in (27):

(26) a. I will go to the party, unless John does or Mary doesn’t ;
b. I will go the party if John doesn’t, and I will go to the party if

Mary does go;
c. Unless John goes to the party, I will go, and unless Mary doesn’t

go, I will go.

(27) T50 [(P → R) ∧ (Q → R)] ↔ [P ∨ Q → R]

3.4 Argument 3: NPI Phenomena

Our compositional analysis of unless as if not is strengthened, rather than weak-
ened, by NPI phenomena. To remind the reader, NPIs are lexical items that
appear in negative contexts. The issue with treating unless as equivalent to if
not is that to if not licenses NPIs, such as any, but to unless does not.

A systematic account of how unless interacts with NPIs can explained using
the Quantifier Confinement Laws (QC) for the antecedent of a conditional toge-
ther with linguistic rules governing the scope of any and all when interacting
with other operators such as negation. This strengthens our analysis by using,
compositionally, the QC laws governing if in the analysis of unless as if not.

Here the behavior of any with respect to unless is similar to the behavior
with any in the antecedent of a conditional. Any, unlike all, takes wide scope
when interacting with not, and the apparent interchangeability of any and some
in the presence of negation in the context of the antecedent of a conditional is
also explained by the QC Laws:

(28) T221 ∀x (Fx → P) ↔ (∃xFx → P)

(29) T222 ∃x (Fx → P) ↔ (∀xFx → P)

The attachment behavior of -not is compositionally promiscuous in the following
paraphrases. Note in particular the difference between (30-b) and (30-c):

(30) a. Unless you’re with us, you’re against us;
b. = If -not (you’re with us), then you’re against us;
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c. = If not-(you’re with us), then you’re against us;
d. = If (you’re not with us), then you’re against us.

The Positive Polarity Item (PPI) all promotes promiscuity:14

(31) a. Unless you’re with us on all of the issues, you’re against us;
b. = If -not (you’re with us on all of the issues), you’re against us;
c. = If not-(you’re with us on all of the issues), you’re against us;
d. = If (you’re not with us on some issue), you’re against us.

However, this promiscuity is confined in the presence of NPIs, such as any :

(32) a. ?Unless you’re with us on any of the issues, you’re against us;
b. �= If -not (you’re with us on any of the issues), you’re against us;
c. = If not-(you’re with us on some of the issues), you’re against us;
d. = Unless you’re with us on some of the issues, you’re against us.

Here the non-equivalence of the two displayed sentences arises from the fact
that any is typically represented by a universal quantifier with wide scope. In
the first sentence, unless blocks the wide scope reading of any, thus creating an
ungrammatical reading with any in an NPI context. The second sentence allows
for the wide scope reading, making any interchangeable with some.

3.5 Argument 4: Negative Affixation and Contrariness

Our analysis is not negatively affected by Negative Affixation phenomena. To
remind the reader, the problem is that morphologically incorporated negative
prefixes, such as un-, do not license NPIs.

The problem with negative affixation does not arise because unless is ana-
lyzed in terms of if not. Rather, the problem arises because unhappy (a contrary
state of happiness) does not mean the same as not happy (the contradictory of
the state of affairs of being happy).

(33) a. ?Assad is unhappy with any of Obama’s demands unless they had
Putin’s prior approval

b. Assad is not happy with any of Obama’s demands unless they had
Putin’s prior approval

c. = If they did not have Putin’s prior approval, Assad is not happy
with any of Obama’s demands.

Affixing negation to the predicate to create unhappy eliminates a reading in
which negation has wider scope. This occurs in the following:

(34) a. Assad is not happier than Putin with any of Obama’s demands;
b. *Assad is unhappier than Putin with any of Obama’s demands.

14 PPIs, in contrast to NPIs, appear in affirmative or positive contexts; they do not
require negation in order to be licensed.
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Note that all of the following combinations are possible:

(35) Assad is (unhappy/not happy) with (all, some, most, a few) of Obama’s
demands.

3.6 Argument 5: Successful Factoring with Until and Unless

Unless can sometimes be replaced by, or factored with, until, indicating that
our compositional analysis is not precluded by distinguishing the categories of
propositions and processes, states of affairs and states.

Quine’s charge is that modal logic was “conceived in sin” because it confused
use and mention: entails connects names of propositions, whereas the mater-
ial conditional connects propositions themselves [21]. Fear of violating Quinean
dicta hampered logical research into modal logics for nearly a decade. When logi-
cians were able to cast off the chains of Quine’s dogmatism, analyses combining
modal operators and propositional connectives were not only possible, but also
plausible, and hence more unified theoretically. Similarly, the charge that unless
and until must connect totally disjoint categories of linguistic entities prevents
us from seeing that they can factor the very same sentences.15

(36) Until and unless you realize that money is the root of all good, you ask
for your own destruction.

(37) Unless and until you have someone to take my place I won’t leave.

To summarize our arguments, we have shown that Quine’s analysis of unless as
the logician’s inclusive or does not render our analysis redundant since ours,
unlike Quine’s, can explain why and when unless fails to commute. Moreover,
Quine’s analysis yields false predictions about factoring. NPIs strengthen our
analysis insofar as an explanation of duality of QC laws in the antecedent of a
conditional can be invoked to explain the linguistic differences between any and
all and the apparent equivalence of any and some. Negative affixation problems,
explained by the difference between negation as a predicate forming operator
and a propositional operator, do not pose any special problems for our analysis.
Finally, the parallel use of unless and until in factoring holds out the possibility
of a compositional analysis, to which we turn in Sect. 4.

3.7 A Note on “Replaceability”

It should be noted that our proposal is not that unless can be simply replaced
by if not. The examples due to Geis [5] clearly show that this cannot be done.

15 Important differences remain. Löbner [16] notes that propositions connected by
unless are typically complete or perfective states of affairs, whereas until typically
connects incomplete or imperfective processes or phases of states of affairs. Further-
more, he notes that the complement clause that accompanies unless, unlike that of
until, typically has a negative polarity [16]. These observations, in our view, should
not deter, but be invitations for deeper, compositional analyses.
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(38) a. I would prefer it if you didn’t call me immediately.
b. *I would prefer it unless you call me immediately.

Our analysis, while differing it its details from Geis’s, uses his semantic strategies
of treating if as a restrictor and not as an exceptive [5].

Geis argues that there is a difference between unless by if not when conjoined
as exceptive clauses, in cases of anaphoric reference with phrases such as in such
cases, and when combined with counterfactuals [5].

(39) a. I won’t leave unless you have a replacement and unless you ask me
to stay.

b. I won’t leave if you don’t have a replacement and if you don’t ask
me to stay.

Geis marks (39-a) ungrammatical, but we disagree. Geis claims that unless in
(39-a) implies the uniqueness of the exceptional circumstances introduced by the
unless clause. However, this explanation cannot be correct. Suppose my demands
for not leaving include both that you get a replacement for my menial job and
ask me to stay in a lucrative way (i.e., by giving me a raise). Moreover, in certain
cases there seems nothing grammatically wrong, or deviant, with the following
conjoined and disjoined unless clauses, calling into question Geis’s attribution
of ungrammaticality to (39-a).16

Thus far, we have refuted various arguments against the possibility of analyz-
ing unless in terms of if and not. We have illustrated how we intend to analyze
unless in terms of if not, where the negation expresses exceptional circumstances
introduced by the relevant situations introduced by if. Our proposal is not that
unless can simply be replaced by if not. Rather, we have shown that analyzing
unless in compositional terms of if and not can explain much of the previously
anomalous semantic behaviors of unless.17

The third objection was that any proposal to build a compositional analysis
of until from unless is doomed to fail. We face this challenge in the next section.
16 There is nothing grammatically wrong with the following conjoined and disjoined

unless clauses: (i) Rosemary can’t sleep unless she has her pillow and unless it is
quiet; (ii) Rosemary can’t sleep unless she has her pillow or unless it is quiet;
(iii) Rosemary can’t sleep if she doesn’t have her pillow and (if ) it isn’t completely
quiet; (iv) Rosemary can’t sleep if she doesn’t have her pillow or (if ) it isn’t com-
pletely quiet.

Note the optionality of if in the second clause in examples (iii) and (iv). Here, the
equivalences among (i) and (iii) and (ii) and (iv) can be explained by our analysis
and the following pair of propositional theorems: T50 (P → Q) ∧ (P → R) ↔ (P ∨
Q → R); T60 (P → Q) ∨ (P → R) ↔ (P ∧ Q → R).

17 Here we rely on the work of others (cf. Geis [5], von Fintel [4], Kratzer [13,14]) who
have substantial proposals on how to to treat if as a quantifier domain restrictor
and if -not as a specifying exceptions to those restrictions.
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4 A Compositional Analysis of Until

Consider the proverbial saying:

(40) The game’s not over until the fat lady sings.

The meaning of this saying is that one should not presume to know the outcome
of an event until that event is over. The saying can be paraphrased as:

(41) a. Unless the fat lady has already sung, the game’s not yet over;
b. If the fat lady hasn’t sung yet, then the game’s still not over.

The temporal particle already relates the present time to the time in the past
whereas yet relates the present time to the time in the future at which the event
referred to in the proposition the fat lady sings is completed.

A variation of Quine’s original example also admits of a paraphrase relating
unless and until.

(42) Smith didn’t sell the house until last Thursday.

Suppose there is question whether you called Smith in time to place a qualifying
bid on the house. The time in question is then the time at which you called
Smith. Then from the above statement, we could legitimately infer that:

(43) a. Unless the time in question was already last Thursday, Smith hadn’t
yet sold the house;

b. If the time in question wasn’t yet last Thursday, then Smith hadn’t
sold the house yet

c. If the time in question wasn’t Thursday yet, then Smith still hadn’t
sold the house.

Using these ideas, we can now motivate our compositional analysis of until in
terms of unless.

Temporal language exhibits a logical structure that is modal. A minimal
tense logic can be obtained from the Kripke frame semantics for the normal
modal logic K by adding temporal operators and tense axioms.

First, we introduce a pair of temporal operators with respect to the future
and a pair with respect to the past.

(44) a. � It will always [i.e., in all futures] be the case that
b. ♦ It will [i.e., in some future] be the case that
c. � It has always been [i.e., in all pasts] the case that
d. � It was once [i.e., in some past] the case that

Only one member of each pair is required since the standard laws of duality or
laws of modal negation hold for these modal operators:

(45) ∼ � ϕ ⇔ � ∼ ϕ

(46) � ∼ ϕ ⇔ ∼♦ ϕ
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For purposes of translating and symbolizing it will be useful to have all four
operators.

Secondly, we may state the semantics for the temporal operators. A model M
for tense logic consists of (T, <, α), where T is a set of times, < is an ordering
relation over times (where ‘<’ is read “is earlier than”, and its converse ‘>’ is
read “is later than”), and α is the actual present. Then the standard clauses for
the operators come in two valences—future and past:

(47) a. M, α |= � ϕ ⇔ ∀t ∈ T (α < t ⇒ M, t |= ϕ)
b. M, α |= ♦ ϕ ⇔ ∃t ∈ T (α < t & M, t |= ϕ)

(48) a. M, α |= � ϕ ⇔ ∀t ∈ T (α > t ⇒ M, t |= ϕ)
b. M, α |= � ϕ ⇔ ∃t ∈ T (α > t & M, t |= ϕ)

One valence is simply the converse of the other with respect to the ordering
relation ‘<’.

Finally, we obtain tense logic by adding two axioms interrelating the past and
future valences of the temporal operators. The axioms for minimal tense logic
have the form of the famous Brouwersche axiom of modal logic with alternating
valences:

(49) a. (B� �) ϕ → � � ϕ
b. (B� ♦) ϕ → �♦ϕ

Using this modal apparatus of tense logic, let’s consider again a previous exam-
ple:

(50) I won’t leave until you have a replacement.

We have the following intuitively equivalent paraphrases:

(51) a. I won’t leave until you have a replacement;
b. = I will not leave until you have a replacement;
c. = If -it is not the case that you have a replacement yet, then I will

not leave yet ;

Now what does it mean to say that your having a replacement is not-yet? It
means that your having a replacement is not (yet) true in some past. What does
it mean to say that I will not leave? It means that my not leaving is true in all
futures. We can symbolize the above using the temporal operators and a natural
scheme of abbreviation:

(52) a. If it is not the case that it was the case that R, then it will always
be the case that not L

b. (∼ � R → �∼L)
c. �∼L unless �R

We may summarize our compositional analysis as follows:

(53) ∼♦L until R := �∼L unless �R
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Using Kripke modal frame semantics for tense logic, we may summarize our
compositional analysis of until in terms of unless as follows:

(54) a. ∼Q until P ⇔ � ∼Q unless �P
b. ⇔ if-not �P then � ∼Q
c. ⇔ M, α |=(∼�P → �∼Q)

This last equivalence can be paraphrased by: ‘∼Q until P’ is the case if, and
only if, at the actual present α, in every future (with respect to α) ∼Q holds
unless P held at some past.

5 Comparison with Other Accounts

5.1 Kamp (1968)

Our compositional analysis of until is different from the analysis in Kamp’s The-
orem, which states that on continuous linear orders, every first-order statement
with one free variable is definable in terms of until and since [10]. According
to Kamp’s analysis, the semantic clause for until is an existential generalization
over a conjunction:

(55) M, α |= P until Q :=
∃t ∈ T [α< t & M, t |= P & ∀x ∈ T (α< x < t ⇒ M, x |= Q)]

To see more clearly the critical difference between Kamp’s analysis and ours, let’s
call the sentence Q following connective until the concedent (a cross between
concluding and antecedent conditions). Then Kamp’s analysis requires that the
concedent will at some time in the future be realized whereas our analysis does
not. Ordinary language does not require Kamp’s implication.

Recall Adlai Stevenson’s famous rhetorical reply during the 1962 Cuban mis-
sile crisis. The Russian representative was refusing to answer a question about
whether the Soviets were installing missiles in Cuba, and Stevenson responded:

(56) “I am prepared to wait for my answer until Hell freezes over.”

According to Kamp’s analysis, the above statement implies that there is a time in
the future when Hell does, in fact, freeze over. Stevenson’s statement has no such
implication. On the contrary, assuming that Hell never freezes over, our analysis
gives the correct conversational implication, according to which Stevenson is
stating he is prepared to wait forever or as long as it takes.

5.2 Karttunen (1974)

Karttunen’s analysis of until is built upon a distinction between punctual and
durative until (distinguished notationally by untilP and untilD) [11]. untilP

connects event descriptions of accomplishments or achievements (e.g., falling
asleep, waking up, or breaking an enchantment) located at a point in time,
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whereas durative untilD connects event descriptions of states or activities (e.g.,
sleeping, waking from sleep, or living happily ever after) that endure over a time
interval. A key linguistic difference is that untilP is polarity sensitive whereas
untilD is not [11].

Consider the following:

(57) a. Sleeping Beauty did not wake up until Prince Charming kissed her.
b. Sleeping Beauty slept until Prince Charming kissed her.

Sentence (57-a) connects the punctual commencement of Sleeping Beauty’s wak-
ing up after a point in time at which Prince Charming kissed her, whereas
sentence (57-b) states that the durative state of Sleeping Beauty’s being asleep
occurred during the interval of time before she was kissed by Prince Charming.

According to Karttunen’s analysis, ‘∼ Q untilP t ’, has the logical form
of ‘∼ (Q before t)’ [11]. Karttunen claims that untilP creates a negative
polarity context for Q and triggers the presupposition that the event Q occurs
at some time related to the point in time t expressed in untilP clause. This
presupposition that the event Q actually occurs cannot be cancelled in the way
conversational implicatures typically can. Karttunen claims that former does in
fact semantically imply that Sleeping Beauty woke up after Prince Charming
kissed her. The corresponding implication for durative untilD does not hold.
This implicature is merely conversational because it can be cancelled:

(58) Sleeping Beauty slept until Prince Charming kissed her; in fact, she
slept for another hundred years.

A salient linguistic difference between untilP and untilD is that the former
appears to be acceptable only in the context of negation, whereas the latter is
acceptable in both positive and negative contexts.

(59) a. *Sleeping Beauty woke up until Prince Charming kissed her.
b. Sleeping Beauty did not sleep until Prince Charming kissed her.

Notice that (59-b) is ambiguous between Sleeping Beauty’s not falling asleep
until Prince Charming kissed her and Sleeping Beauty’s not being in a continuous
state of sleep until Prince Charming kissed her.

(60) a. Sleeping Beauty did not sleep (fall asleep) untilP Prince Charming
kissed her.

b. Sleeping Beauty did not sleep (sleep continuously) untilD Prince
Charming kissed her.

There is a debate whether this ambiguity is lexical (cf. [2,11]) or scopal ([8,12,19]).
Our analysis has certain theoretical advantages over Karttunen’s account.

First, his account must stipulate that the event Q occurs at some time related
to the point in time t expressed in the untilP clause. When the storyteller says
that Sleeping Beauty did not wake up until Prince Charming kissed her, this
does not imply that Sleeping Beauty never woke up prior to Prince Charming’s
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kissing her, but this proposition refers to the relevant event of sleeping relative
to the reference point of Prince Charming’s kissing her (i.e., the sleeping due to
the enchantment which was broken by Prince Charming’s kiss). This quantifi-
cational relevance restrictor is already present in our analysis of if as involving
quantification over the relevant cases and meaning something like ‘in cases in
which’.

Secondly, Kartunnen’s account stipulates that untilP triggers the presup-
position that the event Q occurs at some time related to the point in time t
expressed in the untilP clause, whereas untilD does not. We can explain this
presupposition by analyzing untilP in terms of exclusive unless.18

Thirdly, we mentioned the debate whether the ambiguity of sentences such
as “Sleeping Beauty did not sleep until Prince Charming kissed her” is lexical
([2,11]) or scopal ([8,12,19]). In our view both lexical and scopal ambiguities are
present. The difference between (61-a) and (61-b) is explained in terms of the
scopal ambiguity between (61-c) and (61-d), respectively:

(61) a. Sleeping Beauty was still not sleeping.
b. Sleeping Beauty was not still sleeping.
c. It is still the case that not-Sleeping Beauty is sleeping.
d. It is not the case that (still -Sleeping Beauty is sleeping).

Finally, if our above account of NPIs has been successful, we can use the logically
distinctive behavior of negation when it has scope over a conditional compared
to its behavior when confined to the antecedent of a conditional to account for
the existence of NPIs within untilP . However, we do not have the time to
develop this line of thought here and leave this for future endeavors.

6 Concluding Remarks

We have shown that the similarity between unless and until is more than merely
morphological. According to our compositional analysis, we can obtain an analy-
sis of the latter in terms of the former by adding modal tense operators and an
array of temporal particles. This discovery was aided and abetted by the explicit
rejection of all three of Quine’s dogmas of linguistic negativism. Although there
is more work to be done, our compositional analysis is elegant : it has a pleasing
simplicity and symmetry.

Our case study recommends a less prescriptive and coercive approach than
Quine’s in favor of one that is a more descriptive and collaborative. In the case
of logic in the second half of the 20th century, Quinean dogmas had a decidedly
18 According to our analysis of the punctual sense of until, we do not need to stipulate

ad hoc that after Prince Charming kissed her, Sleeping Beauty woke up because
this will be a logical consequence of analyzing until in terms of an exclusive unless:

∼Q untilP P ⇔ � ∼Q unless-exclusive �P
⇔ iff -not �P then � ∼Q
⇔ [if -not �P then � ∼Q] and [if �P then ∼� ∼Q]
⇔ [if -not �P then � ∼Q] and [if �P then ♦Q]
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negative influence on the flourishing of logical and linguistic research into such
theoretically fruitful areas as modal logic and propositional attitudes. In our
study we have argued that Quine’s linguistic negativism has had a similar nega-
tive influence, forcing semantics to conform to the Procrustean bed of canonical
first-order logic. This unduly prescriptive approach ignores that linguistics can
be a fountainhead for discovering new elements of meaning that widen the scope,
and renew the vigor, of logical research. Logic without linguistics is empty; lin-
guistics without logic is blind.

We hope that our compositional and collaborative approach to unless and
until, exploring and exploiting the rich interplay of resources from logic and
linguistics, has produced an account that is more correct, formally elegant,
and theoretically unified than has previously been offered.
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Abstract. We present a formalization of the Löbner-Barsalou frame the-
ory (LBFT) in Dependence Logic with explicit strategies. In its present
formalization, [Pet07], frames are defined as a particular kind of typed fea-
ture structures. On this approach, the semantic value of a lexical item is
reduced to its contribution to the truth conditions of sentences in which it
occurs. This reduction does neither account for dynamic phenomena nor
for results from neuroscience which show that meaning cannot be reduced
to truth conditions. In order to overcome these shortcomings, we develop
a dynamic frame theory which is based both on Dependence Logic [Vää07]
and Dynamic Epistemic Logic ([vB11]). The semantic phenomenon with
respect to which this framework is tested are numerical expressions like
‘two’ or ‘at least two’. They are interpreted as strategies which change the
input information state to which they are applied.

Keywords: Dependence logic · Dynamic epistemic logic · Dynamic
semantics · Numerals · Scalar quantifiers

1 Introduction

In the last two decades, there has been a growing interest in combining ideas
from cognitive science, neuroscience (neurophysiology and neuroimaging), formal
linguistics and computer science, using advanced tools from mathematical logic.
A major reason for this trend can be seen in improved empirical methods of
testing linguistic theories with respect to their empirical and cognitive adequacy:
(i) How are sentences (or expressions occurring in them) processed in the brain?
and (ii) How is semantic knowledge about the meanings of words acquired in
the process of language learning? In this paper we will focus on one particular
linguistic phenomenon: bare numerals like ‘two’ or ‘three’ and so-called scalar
expressions like ‘at least’, ‘at most’, ‘more than’, ‘less than’, and ‘exactly’, which
can be used to modify bare numerals.

(1) a. John read (at least / at most / exactly) two books.
b. Mary drank (less than /more than) three cups of coffee.
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There are at least two reasons for choosing this particular topic. First, it has
received much attention in recent years, not only from linguists but also from
cognitive and neuroscientists. Second, and even more importantly, the theoretical
analyses and empirical results presented in those studies provide ample evidence
for the fact that these expressions cannot be analyzed in such a way that their
meaning is reduced to the contribution they make to the truth conditions of
sentences in which they occur.

There is no general agreement what exactly this additional, non-truth-
functional meaning component should be. We will show that in order to answer
this question one has to take up ideas from different conceptual and theoretical
frameworks. In particular, we will argue for the following interdependent theses:
(i) In principle, there is no difference between linguistic and non-linguistic mean-
ing (Situation Theory), (ii) The meaning of a linguistic expressions is its context
change potential (Dynamic Semantics, Update Semantics); (iii) The meanings of
linguistic expressions are closely related to how the information (or belief) state
of an agent changes when processing an utterance containing this expression
(Dynamic Epistemic Logic) and (iv) The meanings of linguistic expressions are
closely related to the notions of a strategy from game theory and that of a plan
from cognitive science and philosophy.

2 Bare Numerals and Scalar Quantifiers

2.1 Bare Numerals

There are two different semantic analyses of bare numerals like ‘two’. According
to the first one, the set-theoretical condition imposed by ‘two’ is the same as
that for ‘at least two’ (2). This is, following [Hor89], the so-called ‘one-sided’
analysis.

(2) [[two]] = {〈P,Q〉 : |P ∩ Q| ≥ 2}
On this analysis, bare numerals form a scale such that the following inferences
are true with respect to this scale.

(3) a. Joe has four children → John has three {two, one} children.
b. John doesn’t have three children. → John doesn’t have {five, six, . . .}

children.

The ‘exactly’ interpretation arises if an implicature with respect to such a scale
is used. Evidence for this semantic analysis comes from the fact that such an
implicature can be canceled.

(4) a. Pat has three children and possibly four.
b. Pat has three or even four children.
c. Pat doesn’t have three children. → Pat has less than three children.

By contrast, on a ‘two-sided’ analysis, the set-theoretic condition is {〈P,Q〉 :
|P ∩ Q| = 2}. If the meaning of an expression is reduced to its truth-conditions
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(or its contribution to the truth-conditions of sentences), ‘two’ and ‘at least two’
have the same meaning on a one-sided analysis. By contrast, given the same
assumption, ‘two’ should be equivalent to ‘exactly two’ on a two-sided analysis.
Both analyses face empirical problems. The most important of these problems
is that bare numerals give rise to different interpretations, depending on the
context in which they occur ([Mus04,Car98], [Sza10, 145ff.]).

(5) A: How many mistakes did you make?
B: I made three mistakes.

The preferred interpretation of ‘three’ in (5) is ‘exactly three’. Similarly, on a
predicative or a collective use, a bare numeral gets an ‘exactly’-reading.

(6) Those are two dogs.
(false if the speaker is pointing at three dogs)

(7) Two dogs (together) pulled the sled to the barn.
(false if the collective agent of the event consisted of three dogs, or of two
dogs and a sheep)

By contrast, if a bare numeral is used distributively, the preferred interpretation
of ‘three’ is ‘at least three’ (8). E.g., (8a) is true even if there are more than two
dogs which barked.

(8) a. Two dogs were hungry. They barked.
b. You need to make three mistakes to be allowed to take the test again.

Finally, a bare numeral can also receive an ‘at most’ interpretation, witness (9),
the preferred interpretation of which is that the addressee passes the test if (s)he
makes at most three mistakes.

(9) You can make three mistakes and still pass the test.

2.2 Scalar Quantifiers

If the meaning of a (modified) generalized quantifier is defined solely in terms
of its truth conditions, which, in turn, are defined purely set-theoretically, the
pairs in (10) and (11) are semantically equivalent.

(10) a. John read at least three books.
b. John read more than two books.

(11) a. John read at most three books.
b. John read fewer than four books.

This view of defining the meaning of scalar quantifiers has been criticized both
for empirical reasons and from the perspective of language acquisition.

Language Acquisition. [Mus04] conducted different experiments with 5-year
old, preschooler children in order to assess their semantic competence with
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Table 1. Results of an experiment on comparing the availability of readings for bare
numerals for children aged five [Mus04]

Context / group exactly n at least n at most n

Adult 100% 95% 97,5%

Child 100% 80% 83,5%

Table 2. Results of an experiment on comparing the semantic knowledge of children
aged five for modified bare numerals [Mus04]

Context / group exactly n at least n at most n more than n

Adult 100% 100% 95,5% -

Child 100% 50% 54,1% 88%

respect to bare numerals like ‘two’ and modified bare numerals like ‘at least
two’ or ‘exactly two’. The aim of the first two experiments was to access the
ability of those children to differentiate between an ‘exactly’ and a non-‘exactly’
interpretation of bare numerals. The findings are given in Table 1 (percentage
indicates the acceptance rates).

The main finding of this experiment is that preschoolers aged 5 can assign
numerals the full range of interpretations available in the adult grammar (i.e.
‘exactly n’, ‘at least n’ and ‘at most n’) ([Mus04, 30]). The second experiment
aimed at comparing the children’s semantic knowledge of bare numerals that are
modified with ‘exactly’, ‘at least’, ‘at most’ or ‘more than’, Table 2.

[Mus04] draws the following consequences from this experiment: (i) Children
aged 5 know what ‘exactly n’ and ‘more than n’ mean but they are clueless
about the meaning of phrases like ‘at least n’ and ‘at most n’; (ii) Children do
not disregard the modifier expression, witness the high acceptance rate for the
comparative ‘more than’ and (iii) Although children have implicit knowledge of
the fact that bare numerals can have exact and non-exact interpretations, they
do not yet know the meaning of the expressions corresponding to the non-exact
interpretations of bare numerals.

[GKC+10] tested the semantic knowledge of 11-year-old children with respect
to modified bare numerals, also including ‘fewer than’, which was absent from
the study carried out in [Mus04]. The results in descending order indicate the
percentage of correct answers: (i) ‘exactly’ (100 %), (ii) ‘more than’ (97 %),
(iii) ‘at least’ (88 %), (iv) ‘fewer than’ (77 %), ‘at most’ (43 %). This experiment
shows that in contrast to 5-year-old children, 11-year-old children do very well
with ‘at least’ (88 %), but they still have significant difficulties in understand-
ing ‘at most’ (43 %). [GKC+10, 143] comment: ‘While five-year-olds have serious
trouble with superlative quantifiers, they are quite good with ‘more than’. By the
time they are 11, children are essentially perfect with ‘more than’, still struggling
with ‘at most’, and fairly good with ‘at least’ and ‘fewer than’. [PM03] showed 5-
year-old children a scenario in which (exactly) three horses jumped over a fence.
At the end of the story, a puppet described what happened by uttering (12a).
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(12) a. Two of the horses jumped over the fence.
b. Exactly three horses jumped over the fence.

The comment (12a) of the puppet was consistently rejected by the children. They
argued that three and not just two horses jumped over the fence, i.e. ‘two’ is not
interpreted as ‘at least two’. The result of this experiment therefore shows that
given a particular scenario, children are able to determine a unique interpretation
for a bare numeral.

The ‘namely’-Construction. In contrast to comparative scalar modifiers
superlative scalar modifiers followed by the ‘namely’-construction allow a spe-
cific or referential reading, conveying the information that the speaker has a
particular set of persons in mind, (13) ([GN07, 534]).

(13) a. I will invite at least two people, namely Jack and Jill.
b. ?I will invite more than one person, namely Jack and Jill.
c. *I will invite more / fewer than two people, namely Jack and Jill.

3 A Frame-Based Analysis of Bare Numerals and Scalar
Modifiers

3.1 Frames, Feature Structures and Teams

The discussion of the data in Sect. 2 has shown that bare numerals allow dif-
ferent interpretations and that veridical visual observations are interpreted in a
unique way, leaving no way for epistemic uncertainty.1 Using a dynamic frame-
work, in which meanings are context change potentials, we can give the follow-
ing possible analysis of the above data: (i) linguistic inputs like utterances or
speech acts involving bare numerals update the information state of an agent in
a non-deterministic way because (s)he cannot epistemically distinguish between
the different interpretations receiving only this input, and (ii) for a veridical
observation, the exact number can be exactly determined (provided it is not
too large). To make this idea precise, consider the following example taken from
[vB11, 45f.].

Throwing a Party: You know that (i) John comes if Mary or Ann does,
(b) Ann comes if Mary does not come, (c) If Ann comes, John does not.

The question is what information can be deduced from this set of premises?
Using first-order reasoning, one gets:

By (c), if Ann comes, John does not come. But by (a), if Ann comes,
John comes. This is a contradiction, so Ann does not come. But then,
by (b), Mary comes. So, by (a) once more, John must come. Indeed a
party {John, Mary} satisfies all three premises.

1 Of course, this need in general not to be true for arbitrary observations. Here we
refer to the circumstances under which the children and the adults observed the
scene where three horses jumped over a fence.



Frame Theory, Dependence Logic and Strategies 215

As noted in [vB11, 46], the premises can equally be seen from a dynamic per-
spective on which they are taken as information events, like observations or
utterances by others, which change the information state an agent is in. At the
beginning, no information is available to the agent so that all eight options of
inviting three different persons are possible.

(14) {MAJ,MA¬J,M¬AJ,M¬A¬J,¬MAJ,¬MA¬J,¬M¬AJ,¬M¬A¬J}
The three premises are formally taken as updating this initial information state
the agent is in. A possible sequence of updates is given in (15).

(15) (M or A) → J, new state : {MAJ,M¬AJ,¬MAJ,¬M¬AJ,¬M¬A¬J}
not-M → A, new state : {MAJ,M¬AJ,¬MAJ}
A → not-J, new state : {M¬AJ}

Applying this type of reasoning to the sentence ‘Three horses jumped over the
fence, involving the bare numeral ‘three’, one arrives at the following sequence
of deliberations. Only getting this information, the agent doesn’t know whether
‘three’ has to be interpreted as ‘at most three’ (L), ‘exactly three’ (E) or ‘at
least three’ (M).2 Thus, at least theoretically, there are eight options, (16).

(16) {MEL,ME¬L,M¬EL,¬MEL,M¬E¬L,¬ME¬L,¬M¬EL,
¬M¬E¬L}

Given that 5-year-old preschoolers can already distinguish between the three
principle cases in the sense that they know that in a given context exactly one
option is true, he or she applies the four rules in (17), reducing the eight options
in (16) to the three given in (18).3

(17) a. E → ¬(M ∨ L)
b. M → ¬(E ∨ L)
c. L → ¬(M ∨ E)
d. E ∨ L ∨ M

(18) {¬M¬EL,M¬E¬L,¬ME¬L}
The scenario presenting three horses jumping over a fence is an observation
made by the child that triggers an update of its current information state. This
observation corresponds to E in (16). Together with the additional premise (17a),
the new, updated, information state of the child is (19a), which is expressed by
the sentence (19b). By contrast, this observation falsifies (19c) because it is not
in accordance with the observation made by the child.

(19) a. {¬ME¬L}
b. Exactly three horses jumped over the fence.
c. Two of the horses jumped over the fence.

2 Though using his knowledge that bare numerals are often used with an ‘at least’
interpretation when used distributively, this may be the preferred assumption.

3 This follows from the example in (12) as well as the examples from Musolino’s first
two experiments.
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Fig. 1. Barsalou-Löbner frame

In the frame theory of [Pet07], one way of representing an event of type ‘Three
horses jumping over the fence’ is given in Fig. 1.

However, such a frame or feature structure only models one possible option
of how the current information state of an agent can be updated upon hear-
ing the utterance ‘Three horses jumped over a fence’. It does not capture the
agent’s epistemic uncertainty about the fact that ‘three’ can have three different
readings.

In our approach, this problem is solved by using a different form of represen-
tation that resembles the tabular form in database theory. Consider Table 3 (⊕
is the operation which maps a sum-object in a Link-style representation to its
set of atoms).

Table 3. A frame for the event of three horses jumping over a fence

This table can be taken as a set of events with each event being a finite
mapping s from a domain dom(s) to the universe U of a model M . Elements of
dom(s) are called features or attributes. They can be properties of objects like
colour or profession, but they can also represent properties of events like their
type and thematic relations like actor. One way of interpreting this table is the
following. It is split into three (sub-)tables such that each subtable matches one
of the three possible readings allowed by ‘three’.

The set of events in Table 4 (left) corresponds to the reading ‘Exactly three
horses jumped over the fence’. The subtable consisting of e1, e2 and e3 (Table 4,
middle) represents the reading that at least three horses jumped over the fence
(assuming a total of five horses) whereas the table made up of e1, e4 and e5

corresponds to ‘At most three horses jumped over the fence’, Table 4 (right).
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Table 4. Teams for modified bare numerals

Each situation represented by one of the three tables is epistemically indis-
tinguishable for the agent because he does not know which reading applies, given
only the information ‘three horses’.

4 Strategies, Teams, Sequential Composition and
Dynamic Updates

As shown by the data in Sect. 2.2, one major problem that has to be solved in
analyzing scalar modifiers is the fact that their meaning cannot be reduced to a
set-theoretical condition. We will use strategies to solve this problem. Intuitively,
a strategy is a plan to reach a goal. In the linguistic case, a goal is determined
by the truth conditions of an expression, for example the set-theoretic condition
imposed by a scalar modifier. In general there can be different ways to reach
a goal. For example, a superlative scalar modifiers like ‘at least n’ is analyzed
as a strategy that allows to choose between two branches. The two branches
correspond to splitting the set-theoretic condition in a deterministic (‘=n’) and
a non-deterministic component (‘>n’). By contrast, for the comparative modifier
‘more than n-1’ one only gets the non-deterministic component and has thus no
choice between different branches in the strategy. The motivation behind this
splitting is based both on cognitive and complexity considerations (see Sect. 5.2).
In the case of bare numerals and scalar modifiers, choices in a strategy express
a condition on the cardinality attribute on the NP of which they are part. Thus,
they correspond to the available readings of those expressions. For example, an
‘exactly’-reading requires a particular value of the cardinality attribute whereas
for an ‘at least’-reading no particular cardinality is determined although the set
of admissible values of the cardinality attribute has to satisfy a specific condition:
it has to be a filter. Strategies are introduced in Sect. 4.1.

In our framework, such constraints on the cardinality attribute are modeled
using techniques from Dependence Logic ([Vää07]). A central notion in Depen-
dence Logic is that of a team, i.e. a set of assignments. A team represents one
possible way the world could be according to the beliefs of an agent. Since for-
mulas are interpreted in Dependence Logic not as sets of assignments but as sets
of sets of assignments, it is possible to impose dependence relations on a team
which must hold globally for the whole domain of the model. For example, a
limiting case of functional dependence, namely constancy, is expressed by the
formula =(x), which says that the value of the attribute x is constant in a team.
This formula will be used for ‘exactly‘-readings. When taken together, the mean-
ing of a bare numeral or a scalar modifier is a pair consisting of a strategy and
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a set of teams with each team corresponding to one of the choices (branches).
Together with structures formalizing such pairs, Dependence Logic is introduced
in Sects. 4.2 and 4.3.

Combining two strategies is defined as sequential composition: each possible
choice of the strategy corresponding to the modifying expression (say ‘at least’)
is extended with every choice of the strategy denoted by the modified expression
(say ‘two’). Combining the set of teams corresponding to the different choices in
a (branching) strategy are modeled as an update operation based on the notion
of a supplement of a team (Sects. 4.4 and 4.5). The interaction of sequential
composing and updating team decorated trees is illustrates in Sect. 4.6.

4.1 Strategies for Modeling Different Readings

Our definition of a strategy closely follows [PS11]. [PS11] distinguish basic and
complex strategies. Complex strategies are built from basic ones using regular
operations from Propositional Dynamic Logic (PDL) like sequencing ‘;’, choice
‘∪’ and iteration ‘∗’. Basic strategies can be branched. Branching is used to
model the possibility for an expression of having more than one interpretation,
like bare numerals for instance. Complex strategies are used to interpret modi-
fiers like ‘at least’, which apply to bare numerals denoting basic strategies. The
most important reason for using strategies is the following. Recall that ‘at least
n’ and ‘more than n-1’ define the same set-theoretical relation although both
expressions differ in meaning, as shown by the data in Sect. 2.2. Using strate-
gies, this difference can be explained as follows. Each strategy defines a set of
states which can be reached by following it. Two strategies can differ although
they determine the same set of states.

Strategies are defined in terms of finite labeled trees:

Definition 1 (Finite Labeled Tree). Let Σ be a (non-empty) finite set of
labels. A Σ-labeled finite tree T is a tuple 〈S, {⇒a}a∈Σ, s0〉 where (i) S is a
(non-empty) finite set of nodes, (ii) s0 ∈ S is the root of T and (iii) for each
a ∈ Σ, ⇒a⊆ S × S is the edge relation satisfying the usual properties of being
irreflexive, antisymmetric and having a unique predecessor, i.e. if s1 ⇒a s and
s2 ⇒b s then s1 = s2 and a = b.

For a given node s ∈ S, the set A(s) = {a ∈ Σ | ∃s′ ∈ S : s ⇒a s′} is the set
of actions available (or executable) at s. A leaf node is an element s ∈ S s.t.
A(s) = ∅. The set of all leaf nodes in a tree is denoted by frontier(T ). The root
of a tree T is denoted by root(T ).

Definition 2 (Strategy Tree). A finite tree T = 〈S, {⇒a}a∈Σ, s0〉 over a label
set Σ is a (basic) strategy tree if its branching labeling is functional: for each
s, s′, s′′ ∈ S and a ∈ Σ, if s ⇒a s′ and s ⇒a s′′ then s′ = s′′ ([PS11, 417]).

Basic strategies are pairs consisting of a strategy tree and a global team, where
the global team is a set of teams and each team is assigned to one leaf of the tree
and vice versa (see Sect. 4.2). The idea behind this definition can be explained as
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follows. The root node s0 of a basic strategy tree is taken as a kind of epistemic
input that triggers a particular plan to which an agent is committed if he has
agreed to follow this strategy. Epistemic inputs can be observations by the agent
(e.g. seeing a particular situation) or utterances by others. The global team
assigned to frontier(T ) of an event model constitutes the new information with
which the agent has to update his current information state (cf. [PS11]).

So far, we introduced strategy trees to model the different readings of bare
numerals and scalar modifiers. However, if strategies are to be used as defining
operations to update information states, the information associated with the
leaf nodes of the tree cannot simply be taken to be ‘indivisible’. Rather, the
information given at those nodes must be such that it is possible to impose
the cardinality constraints expressed by a choice in a strategy tree. Thus, two
problems have to be solved: (i) which structures can be used to impose global,
as opposed to local, constraints? and (ii) how can strategies as labeled trees be
combined with such structures? The answer to the first problem is: (underspec-
ified) teams from Dependence Logic. The second problem is solved by making
use of the notion of a team decorated tree.

4.2 Dependence Logic

The basic semantic notion used in Dependence Logic is that of a team, i.e. a set
of assignments which map attributes (or variables) to elements of the domain of
a first-order model.

Definition 3 (Team). Let M be a first-order model, and let v = 〈v1, . . . , vn〉
be a tuple of variables. A team X for M with domain v is a set of assignments
with domain v over M .

In contrast to first-order logic, formulas are interpreted as sets of sets of assign-
ments and, therefore, as sets of teams. Functional dependence between a sequence
of attributes x1, . . . , xn and an attribute y is denoted by =(x1, . . . , xn, y). In
addition to this dependence atom, the following two operators are defined which
are similar to dependence atoms in being true of a team as a whole. ↑xn requires
the values of the attribute xn to be a filter and ↓xn requires the values to be an
ideal.

(20) M |=
X

=(x1 . . . xn, y) iff for all assignments s, s′ ∈ X with s(xi) = s′(xi)
for i = 1, . . . , n, one has s(y) = s′(y)
M |=

X
↑xn iff ∀s ∈ X : s(xn) = α → ∀β(α � β → ∃s′ ∈ X : s′(xn) = β)

M |=
X

↓xn iff ∀s ∈ X : s(xn) = α → ∀β(β � α → ∃s′ ∈ X : s′(xn) = β)
(� is the part-of relation in a Link-style representation of plural objects)

For formulas of First-Order Logic which do not contain a dependence atom,
satisfaction with respect to a team X reduces to the usual Tarskian semantics
in the sense that a formula is satisfiable just in case it is satisfiable with respect
to each assignment in the team. For example, one has (21).

(21) M |=
X

φ ∧ ψ iff M |=
X

φ and M |=
X

ψ .
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Disjunction (⊗) is defined on the basis of a split team:

(22) M |=
X

φ⊗ψ iff there exist Y and Z with X = Y ∪Z such that M |=
Y

φ
and M |=

Z
ψ .

Furthermore, we need two operators comparing the values of attributes:

(23) M |=
X

(x1 = x2) iff ∀s ∈ X : s(x1) = s(x2)
M |=

X
(x1 < x2) iff ∀s ∈ X : s(x1) � s(x2)

So far we have shown that in Dependence Logic it is possible to impose global
constraints on a team such as they are expressed by the various branches of a
strategy. What is missing is a combination between strategies as labeled trees
and teams. This link is defined in terms of team decorated trees which are a
variant of feature decorated trees ([BGWV93]).

Definition 4 (Team Decorated Finite Labeled Tree; [BGWV93, 24]). A
finite team decorated tree is a pair 〈T,D〉 where T is a finite labeled tree and D
is a function that assigns to each element of frontier(T ) a team.

Definition 5 (Basic Strategy). A basic strategy is a finite team decorated
tree 〈T,D〉 where T is a strategy tree.

Thus, each reading of an expression, represented by a choice in the corresponding
strategy, is related to a team. If frontier(T ) consists of n elements, one gets a
total of n teams. Each team in this set represents one possible way the world
(context, situation) could be according to the beliefs (knowledge) of an agent, i.e.
it is a (partial) description of how the world (context, situation) could possibly
be according to the agent.4 When taken together, the union of these teams
represents the agent’s epistemic or doxastic uncertainty. Such sets modeling the
information state of an agent are called global teams and are denoted by X .

Definition 6 (Global Team). A global team based on a first-order model M
is a set X = {X1,X2, . . .} of teams based on M over the same signature.

In the next section the team decorated trees for bare numerals, scalar modifiers,
common nouns and observations will be defined. In addition, it will be shown
how the relation between the labels on branches of strategies and teams can be
formally defined.

4.3 Basic Strategies for Bare Numerals, Scalar Modifiers, Common
Nouns and Observations

We start by defining the basic strategy for bare numerals (see also Fig. 2).

4 Note that single teams can express uncertainty too. This is the case whenever the
values of an attribute form a filter or an ideal. However, this uncertainty is due to
the interpretation of the expression and need not arise from epistemic uncertainty.
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Definition 7 (Basic Strategy for a Bare Numeral). A strategy for a bare
numeral is a team decorated finite labeled tree of height 2 which is based on
the label set Σ = {πn, π=, π≥, π≤} with path set Path = {πnπ=, πnπ≥, πnπ≤}.
The root node of the tree is the expression whose meaning is determined by the
strategy.

The path prefix πn of all paths expresses that an agent first fixes the base
cardinality n. Each a ∈ {π=, π≥, π≤} corresponds to an option (or choice) an
agent has when processing or interpreting the expression: π= is the operation
that adds the constraint =(card) (leading to an ‘exactly’-reading), π≥ adds
↑card (‘at least’-reading) and π≤ adds ↓card (‘at most’-reading). The satisfaction
clauses for the strategy labels are given in (24).

(24)

πn : M |=
X

base =
n⊕

i=1

type π= : M |=
X

=(card)

π≥ : M |=
X

↑card π≤ : M |=
X

↓card

π> : M |=
X

↑card ∧ (base < card) π< : M |=
X

↓card ∧ (card < base)

The strategy for a bare numeral is depicted in Fig. 2. The teams at the leaf nodes
are underspecified: First, the value can be the most general one. This is the case
for the type attribute which is assigned the top element �. Second, the value of
the base attribute fixes the base cardinality (πn : M |=

X
base =

⊕n
i=1 type), that

is an underspecified sum object of length n consisting of n ‘things’ dependent on
the value of type (a similar argument applies to the card attribute, which is a
complex attribute whose value is computed by the value of the base attribute).5

The strategies for ‘at least’ and ‘more than’ are given in Fig. 3. The basic
strategy interpreting the superlative scalar modifier ‘at least’ is branching, i.e. it
allows two different choices (or options). Either the cardinality information in the
team is constant and therefore satisfies the constancy dependence atom =(card),
or the value of this attribute can vary and forms a filter, ↑card. By contrast, for
‘more than’, there is only the filter condition but no constancy requirement. If
a bare numeral is combined with such a modifier, this is interpreted as a non-
deterministic supplement operation (similar to the existential and the universal
quantifier). Each choice that is possible for the modifier is combined with each
choice that is admissible for the bare numeral (see Sect. 4.4 below for details).

The meaning of common nouns like ‘horse’ are non-branching strategies of
height 1. The label set Σ is a singleton and the only label type corresponds to
the operation which fixes the value of the type attribute. The tree is given in
Fig. 4.

In contrast to the strategy for a bare numeral or another linguistic expres-
sion, the strategy for an observation is a tree of height 0. Thus, it has no labeled

5 Here, we implicitly assumed the initialization assumption which will be introduced
in (25) in Sect. 4.4.
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type base card

o1 � ⊕i=n
i=1 � ⊕i=n

i=1 �
type base card

o0 � ⊕i=n
i=1 � ⊕i=n

i=1 �
o1 � ⊕i=n

i=1 � ⊕i=n
i=1 � ⊕ �

o2 � ⊕i=n
i=1 � ⊕i=n

i=1 � ⊕ � ⊕ �

o|M|−n � ⊕i=n
i=1 � ⊕i=n

i=1 � ⊕i=|M|−n
i=1 �

type base card

o0 � ⊕i=n
i=1 � ⊕i=n

i=1 �
o1 � ⊕i=n

i=1 � ⊕i=n
i=1 � 
 �

o2 � ⊕i=n
i=1 � ⊕i=n

i=1 � 
 � 
 �

on � ⊕i=n
i=1 �

πn

π=
π≥ π≤

Fig. 2. Strategy for a bare numeral

base card
o0 � base o1 � base⊕�

o2 � base⊕�⊕�

π= π>

o1 � base⊕�
o2 � base⊕�⊕�

Fig. 3. Strategies for ‘at least’(left) and ‘more than’ (right)

o1

Fig. 4. Strategy for the common noun ‘horse’

branches at all. Rather, the only node of the tree is assigned a formula (or a
1-element team) which expresses the content of the observation. In contrast to
a strategy representing the meaning of a linguistic expression, a strategy cor-
responding to an observation admits of only one corresponding team which,
furthermore, consists of only one assignment since its meaning is not underspec-
ified.6

6 This does not mean that the observation is specific in the sense that an attribute is
assigned a unique value. For example, without counting the number of horses that
one sees one can say that one is seeing at most / at least n horses.
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Definition 8 (Strategy for an Observation). A strategy for an observation
P is a finite tree of height 0 with Σ = ∅. The associated team consists of one
assignment which specifies the content of the observation.

In the present context, P is a formula of Dependence Logic which expresses a
global property of a team, i.e. its truth cannot be reduced to its truth at single
elements of the team.

Taking stock, we have shown how the meanings of bare numerals, scalar
modifiers and common nouns can be modeled as team decorated trees consisting
of a strategy the choices (branches) of which represent the different readings and
the global team constituting the ‘decorations’ of the leaves modeling the object
as a team satisfying the cardinality constraint imposed by the corresponding
branch. What is missing so far is a mechanism of how such structures can be
combined. Since those structures consist of a strategy and a global team, both
components must be combined. Composing strategies is defined as a form of
sequencing (Sect. 4.4) whereas the combination of the global teams is defined
as an update operation that is based on the notion of a supplement of a team
(Sect. 4.5).

4.4 Sequencing of Two Strategies

A scalar modifier combines with a bare numeral to form a more complex expres-
sion. In our framework, this operation is modeled by sequential composition.

Definition 9 (Sequential Composition of Finite Labeled Trees). Let
T1 = 〈S1, {⇒1

a}a∈Σ1 , s
0
1〉 and T2 = 〈S2, {⇒2

a}a∈Σ2 , s
0
2〉 be two finite labeled trees

with S1 ∩ S2 = ∅. The sequential composition of T1 and T2, denoted by T1;T2, is
the tree T in which each leaf of T1 is replaced by a copy of T2.
Let frontier(T1) = {f1, f2, . . . , fn}. Then T = 〈S, {⇒a}a∈Σ, s0〉 where

(i) S = S′
1 ∪S′

2 with S′
1 = {(s, 0)|s ∈ S1} and S′

2 =
⋃

1≤i≤n{(s, i)|s ∈ S2 \{s0
2}}

that is S′
2 is the n-fold disjoint union of S2 \ {s0

2} with n = |frontier(T1)|,
(ii) s0 = (s0

1, 0),
(iii) (s, i) ⇒a (s′, j) iff

(a) i = j and s ⇒1
a s′ or s ⇒2

a s′ or
(b) i = 0 and j �= 0 and s = fj and s0

2 ⇒2
a s′.

According to Definition 9, the sequential composition of two trees T1 and T2 is
construed by pasting (a copy of) the tree T2 at all leaf nodes of T1.

Let us first consider combining ‘at least’ with ‘two’. In this case copies of
the tree of the strategy representing ‘two’ are glued at the leaves of the strat-
egy for ‘at least’. The result of this sequential composition yields the tree in
Fig. 5(bottom left) of height 3 with six leaves, that is with a total of six theoret-
ical choices.

In general, not all combinations of strategy labels along a path in a sequen-
tial composition tree yield satisfiable satisfaction clauses. Thus, in the case of
a modified bare numeral not all strategies of the numeral may be admissible
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π= π>

π=
π≥ π≤

π2

�

π=

�

π≥

�

π≤

π2

π=

�

π=

�

π≥

�

π≤

π2

π>

Fig. 5. Sequential composition of ‘at least’ and ‘two’

because they have to satisfy the constraint on the cardinality attribute imposed
by the modifier. The following constraint relates the cardinality attribute to the
base attribute if it is not initialized otherwise:

(25) Initialization assumption: If the card attribute is not initialized (as
in the case of scalar modifiers) then

(card = base)⊗=()

holds, i.e. there is at least one assignment in the team such that card =
base is satisfied. This condition is called the initialization assumption.

The satisfaction clauses along a path in a tree resulting from a sequential com-
position of two strategy trees is the conjunction of the clauses for the individual
strategy labels in (24) plus the initialization assumption if it is necessary. Thus,
the admissibility conditions for ‘at least two’ are calculated as follows (the ini-
tialization assumption is given in square brackets and contradictions are marked
by #).

(26) a. (�) π=π2π= : M |=
X

=(card) ∧ (base = � ⊕ �)
[∧(card = base)⊗=()]

b. (#) π=π2π≥ : M |=
X

=(card)∧ ↑card ∧ . . .

c. (#) π=π2π≤ : M |=
X

=(card)∧ ↓card ∧ . . .
d. (#) π>π2π= : M |=

X
↑card ∧ (card > base)∧ =(card) ∧ . . .

e. (�) π>π2π≥ : M |=
X

↑card ∧ (base = � ⊕ �) ∧ (card > base)
f. (#) π>π2π≤ : M |=

X
↑card ∧ (card > base)∧ ↓card ∧ . . .

Consider first ‘at least’. The left choice imposes a constancy condition. This con-
dition is satisfied on an ‘exactly’-reading of the bare numeral (leftmost choice,
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π2

π=

π2

π>

Fig. 6. Strategy for ‘at least two’

π>

π=
π≥ π≤

π2

�

π=

�

π≥

�

π≤

π2

π>

≈

π2

π>

Fig. 7. Sequential composition of ‘more than’ and ‘two’

π=) but not by the other two choices which impose either a filter (π≥) or an
ideal (π≤) condition both of which violate constancy. If instead the other choice
of the strategy for ‘at least’ is chosen (π>), this filter condition excludes both
the constancy and the ideal condition of the bare numeral. Non-satisfiable con-
ditions yield strategies that can be removed from a strategy tree. Thus, in the
example of ‘at least two’, the two remaining strategies together yield the strategy
represented in Fig. 6.

For ‘more than two’, the argument goes as follows. The modifier ‘more than’
requires a filter condition for its cardinality attribute. Sequential composition
with the bare numeral ‘two’ yields a tree with three leafs and thus three options
which are shown in Fig. 7 (below left). Two of these options are not admissible
because the filter condition imposed by the modifier is violated. Figure 7 (below
right) shows the simplified resulting strategy for ‘more than two’.

Given these constraints, it follows that an agent only needs to initialize the
attribute base if a scalar modifier is combined with a bare numeral.

4.5 Dynamic Updates

The processing of utterances changes the input state of an agent. Let X be
such an information state, i.e. a global team. Then an utterance α transforms
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X into X ′. If the update corresponding to α is [α], one gets [α]X = X ′. Since
utterances are syntactically built up from their constituents, the update α must
be defined in terms of more basic updates according to a finite set of operations.
For example, ‘at least n’ is built from ‘at least’ and ‘n’.

In this article, only one type of dynamic update is considered: expansive
update. It applies to the set of teams making up the leaves of a team decorated
tree. The basic idea is that each element of this global team must be updated
by each element assigned to a leaf node (element of frontier(T )) of the strategy
denoting a linguistic expression or an observation.

Formally, this is defined in terms of the notion of supplementation of teams
([Vää07]). The supplement operation on teams adds a new feature to the agents
(or events) in a team, or alternatively, it changes the value of an existing attribute.
The supplement operation on teams is formally defined as follows.

Definition 10 (Strict Supplement of a Team). If M is a set, X is a team
with M as its codomain and F : X → M , X(F/xn) denotes the supplement
team {s(F (s)/xn) : s ∈ X}.
s(F (s)/xn) is based on the notion of a modified assignment. If s is an assignment,
then s(a/x) is the assignment which agrees with s everywhere except that it maps
x to a: dom(s(a/x)) = dom(s) ∪ {x}, s(a/x)(x) = a and s(a/x)(x′) = s(x′) if
x′ �= x for x′ ∈ dom(s). In a strict supplementation, the current team is expanded
by assigning to each agent or event a single value for the attribute xn.

An alternative way of defining the supplement operation consists in allowing
that an agent or event can be assigned different values for the attribute xn. This
is the case whenever an element of frontier(T ) is not a singleton.7

Definition 11 (Lax Supplement of a Team). If M is a set, X is a team with
M as its codomain and F : X → ℘(M) \ ∅, X[xn �→ F ] denotes the supplement
team of all assignments s(a/xn) with a ∈ F (s).

The following definition extends the previous one by allowing the supplemen-
tation of more than one attribute. The supplement of a team X ′ by a team X
results in a team the domain of which is the union of the domains of X ′ and X.
The supplement team keeps all information of X ′ and extends it with informa-
tion about attributes which belong to the domain of team X but not of team
X ′. The latter attributes are successively supplemented to team X ′:

Definition 12 (Supplement of a Team by a Team). Let X, X ′ be two
teams. For xn ∈ dom(X) let FX,xn

be the constant function that maps each
s ∈ X to {s(xn) : s ∈ X}. Furthermore let dom(X) be the domain of X and
infdom(X) = {x ∈ dom(X) | ∃s ∈ X : s(x) �= �} be the set of informative
attributes of X. If dom(X) \ infdom(X ′) = {x1, . . . , xn}, the supplement of a
team X ′ by a team X is denoted as ΔX(X ′) and defined as follows: ΔX(X ′) =
(. . . ((X ′[x1 �→ FX,x1 ])[x2 �→ FX,x2 ]) . . .)[xn �→ FX,xn

]

7 For details on the distinction between strict and lax semantics in Dependence Logic,
see [Gal12].
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Note that the former definition could be also read as an update of team X by
team X ′: All attributes which are only defined in X are kept and extended by
attributes which are unique for X ′. For attributes which occur in the domain of
both teams the information about admissible values given in the updated team
X is overwritten by the updating team X ′ if the attribute is informative in X ′

(that is not constantly of the unspecific value �).
A small example will illustrate the supplement operation and demonstrate

that it is an operation which leads to an immense information loss. Consider the
following two teams:

X =
type color form

s1 apple red round
s2 peach orange round

and X ′ =
type color taste

s1 � red sweet
s2 � green sour

The former could result from the observation of some round fruit that is either
a red apple or an orange peach the latter from the thumb rule that the color of
something is an indicator of its taste. If team X ′ is supplemented by team X
(or alternatively X is updated by X ′) one gets:

ΔX(X ′) =

type color taste form
s1 apple red sweet round
s2 peach red sweet round
s3 apple green sour round
s4 peach green sour round

We have lost the information about the dependency between the attributes
color and type in team X and the admissible value orange for the attribute color.
Thus, as a general update operations on teams in a team-based semantics, Def-
inition 12 needs a careful revision. However, for our purpose here of combining
strategies this rather coarse-grained update operation is sufficient if we filter the
resulting teams by the satisfaction clauses resulting from the sequential combi-
nation of the strategies.8 This will be the topic of the following section.

4.6 Putting Update and Sequencing Together

We start by explaining how sequential composition works in parallel with an
expansive update of the teams decorating the leaves. Suppose we have two strat-
egy trees T1 and T2 which are sequentially combined (T1;T2). Since each leaf
node k of T1 is replaced by a copy of the tree T2, k is in effect replaced by
n = card(frontier(T2)) new leaves. Let Ψ(k) denote the set of all teams dec-
orating one of the n leaves which replace k. Let Xk,j be the element of Ψ(k)
decorating the jth leaf of the tree T2 and Xk be the team assigned to k in
T1. Furthermore let Ck,j be the combined satisfaction clause resulting from the

8 A more fine-grained update or supplement operation can be defined if one uses a
sort hierarchy on the values of an attribute. Using such a hierarchy, the value of the
type attribute in the above example would be calculated as the greatest lower bound
of the values in the corresponding elements of the teams.



228 R. Naumann and W. Petersen

type base card
o0 horse h1⊕h2 h1⊕h2

type base card
o0 horse h1⊕h2 h1⊕h2

o1 horse h1⊕h2 h1⊕h2⊕h3

o|M|−2 horse h1⊕h2 h1⊕h2⊕. . .⊕h|M|

type base card
o0 horse h1⊕h2 h1⊕h2

o1 horse h1⊕h2 h1

o2 horse h1⊕h2 0

π2

π=
π≥ π≤

Fig. 8. Combined strategy for ‘two horses’

strategy labels along the path from the root node of the sequentially combined
tree T1;T2 to the jth leaf of the copy of T2 replacing k. Recall from Sect. 4.4
that the strategy labels given in (24) are combined by conjunction plus the ini-
tialization assumption if necessary (see Fig. 6 for an example). The team Xk,j

is transformed to a team X by supplementing it by team Xk (or alternatively,
Xk is updated by Xk,j). The resulting team is only kept if it passes the filter
imposed on it by the satisfaction condition Ck,j .

Let us first illustrate this construction by an example in which a bare numeral
is combined with a common noun. An agent first fixes the base cardinality
(πn : M |=

X
base =

⊕n
i=1 type ), that is an underspecified sum object of

length n consisting of n underspecified ‘things’ described by type (say π2 in
the case of ‘two’). There are three choices: ‘exactly’, ‘at least’ and ‘more than’
with the corresponding teams satisfying the condition imposed on the cardinal-
ity attribute. Next sequential composition is applied. Since the strategy for a
common noun is non-branching (see Fig. 4), each leaf node k of T1, the strategy
tree for the bare numeral, is replaced by exactly one leaf so that Ψ(k) is a sin-
gleton for 1 ≤ k ≤ 3. One therefore has three teams X1, X2 and X3, resulting
from T1 and three teams X1,1, X2,1 and X3,1 resulting from T2. The team Xk,1

is transformed to a team X by supplementing it by team Xk. In this case there
is no loss of information because in Xk the value of this attribute is �, i.e. the
most general information which is subsumed by the information provided by the
common noun. Since Xk,1 does not impose any further satisfaction constraint,
no team resulting from the supplement operation is discarded. For ‘two horses’,
the resulting team decorated tree is given in Fig. 8.9

Table 5 shows the information state of an agent after processing the expres-
sion ‘two horses’ and choosing the ‘at least’-reading strategy.

9 The indices at horse are used for better readability. Actually, horse has to be used
without indices because the value of the base attribute is a Link-sum object over the
values of the type attribute.
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Table 5. Information state after processing ‘two horses’ by choosing the ‘at least’-
reading

Consider next the combination of ‘at least’ with ‘two’. In this case k = 2 for the
strategy tree corresponding to ‘at least’ (see Fig. 3(left)). Applying sequential
composition, yields a total of six branches since the strategy tree for ‘two’ has
three leaves. Consequently, Ψ(k) consists of three teams Xk,j with 1 ≤ k ≤ 2 and
1 ≤ j ≤ 3. Since both strategy trees impose a satisfaction condition, Ck,j is the
combined satisfaction clause resulting from the strategy labels along the path
from the root node of the sequentially combined tree T1;T2 to the jth leaf of the
copy of T2 replacing k. As was already shown in Sect. 4.4, from the six paths of
T1;T2 four are pruned because the corresponding satisfaction clause cannot be
satisfied. Next the Xk,j are transformed to a team X by supplementing them
with team Xk. Since the attributes base and cardinality are common to Xk,j

and Xk, the values of these attributes in Xk,j are kept. This does not result in
a loss of information because, first, the value of the base attribute of the bare
numeral is always more specific than the value of this attribute in Xk, where it
is �. Second, for ‘at least’, the value of the cardinality attribute is determined in
terms of the value of the (completely underspecified) value of the base attribute.
E.g., for the path π> its value for o1 is base ⊕ �. For ‘two’, the corresponding
value is

⊕i=2
i=1 ⊕�. Since

⊕i=2
i=1 � is more specific than base = �, there is again

no loss of information.
The teams at the leaves of the remaining two non-pruned paths are computed

as follows. The first one is the result of supplementing the team at the left leaf
in Fig. 2 (π2π= strategy for ‘two’) with the team at the left leaf in Fig. 3 (π=

strategy for ‘at least’):

type base card
o1 � � ⊕ � � ⊕ �
The second one is the result of supplementing the team at the middle leaf

in Fig. 2 (π2π≥ strategy for ‘two’) with the team at the right leaf in Fig. 3 (π>

strategy for ‘at least’):

type base card
o1 � � ⊕ � � ⊕ � ⊕ �
o2 � � ⊕ � � ⊕ � ⊕ � ⊕ �
. . . . . . . . . . . .
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If the expression ‘at least two’ is combined with a common noun like ‘horse’,
the type attribute and consequently the dependent base and card attributes will
be further specified as described above.

5 Explaining the Empirical Data from Sect. 2.2

5.1 Referential Anaphora

Recall from Sect. 2.2 the following difference between superlative and compara-
tive scalar modifiers.

(27) a. I will invite at least two people, namely Jack and Jill.
b. ?I will invite more than one person, namely Jack and Jill.

Whereas superlative scalar modifiers allow a reference to specific objects using
the ‘namely’-construction, this is not the case for the corresponding comparative
scalar modifier. This difference is explained in terms of differences in the strate-
gies for superlative and comparative modifiers. Recall that the strategy for the
superlative scalar modifier ‘at least’ allows two different choices. Either the car-
dinality information in the team is constant and therefore satisfies the constancy
dependence atom =(card), or the value of this attribute can vary and forms a
filter, ↑card. By contrast, for ‘more than’, there is only the filter condition but
no constancy requirement. Thus, in contrast to the strategy for a comparative
scalar modifier, the strategy for a superlative scalar modifier contains a deter-
ministic element: π=. Deterministic means that for any given state in a strategy
exactly one transition applies (is possible). In PDL, the use of iteration (*) and
choice (∪) leads to non-determinism, if no restrictions are imposed. Restricting
their use to contexts which yield deterministic programs (while-loops and the
‘if then else’ construct) is called Strict Deterministic PDL (SDPDL) ([HR83]).
SDPDL is less complex than PDL. Its decision problem is in polynomial space
whereas that of PDL is complete in deterministic exponential time. This leads
to the following thesis: The ‘namely’-construction requires a deterministic sub-
strategy. In addition, the above way of defining the meaning of bare numerals
and scalar modifiers explains their difference in cognitive complexity as follows:
(i) bare numerals are simplest because they do not involve the composition
of two strategies; (ii) ‘At least’ is more complex than ‘more than’ because it
involves two different operations in a particular order: sequencing plus choice as
opposed to only choice.

5.2 Explaining the Acquisition Data: 5-year-olds Vs. Adults

Similar to adults, 5-year-old children who are preschoolers already have implicit
semantic knowledge of the non-deterministic interpretation of bare numerals.
That is, they know that the interpretation of these expressions depends on the
context and they are able to match these different interpretations successfully
in the sense that they are able to perform observation updates after processing
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a sentence with a bare numeral. By contrast, their application skills do not yet
match the accuracy of those shown by adults.

We conjecture that there are the following differences in the semantic knowl-
edge of those children and adults. First, children aged 5 only master simple
updates that are given by strategies. Although they already know that a bare
numeral allows different readings, they need a context in order to decide which
reading applies. They do not yet master complex strategies like those imposed
by comparative and superlative scalar modifiers. The experiment of [GKC+10],
see Sect. 2 above, shows that by the age of eleven, children know that com-
parative and superlative scalar modifiers impose strategies on the interpreta-
tion provided by bare numerals. However, their semantic knowledge shows a
clear difference between monotone increasing scalar modifiers like ‘at least’ and
monotone decreasing ones like ‘at most’ and ‘fewer than’. This difference can be
explained as follows. Consider the examples in (28) taken from [Sza10, 56].

(28) a. At least two men walk = There is a set of men with cardinality at
least two such that all its elements walk.

b. At most two men walk �= There is a set of men with cardinality at
most two such that all its elements walk.

If in a given situation two men walk, (28a) is true even if there is a larger situ-
ation in which further men walk. The same does not hold for (28b). If someone
sees Bill and John walking, (28b) is false if there are other men who are walking
too. One way of solving this problem consists in imposing a maximality condi-
tion on monotone decreasing expressions. In Dependence Logic this difference
between monotone increasing and monotone decreasing quantifiers is captured
by explicitly introducing a maximality condition (see [Eng12] for details).

(29) a. M |=X Qxφ iff there exists F : X → ℘(M) such that M |=X(F/x) φ.
b. for each F ′ ≥ F s.t. F ′ : X → ℘(M), if M |=X(F ′/x) φ, then for all

s ∈ X : F (s) ∈ Q where F ′ ≥ F iff for every s ∈ X : F (s) ⊆ F ′(s).

In (29a) Q is a generalized quantifier (of type 〈1〉) and X[F/x] is the supplement
operation. In order to also apply to monotone decreasing quantifiers, it is not
sufficient to only require that there is a function F such that M |=X[F/x]φ.
Rather, the maximality condition in (29b) must be added.

The poor performance on monotone decreasing modifiers shows that children
at the age of eleven still do not master the maximality condition which is imposed
by this type of modifier. Finally, the differences in processing load between this
type of modifier and the upward entailing ones shows that even for adults the
semantic interpretation of the former is more costly than that of the latter. The
differences are summarized in Table 6.

Generalizing the above discussion, one arrives at the following tentative
hypotheses: (i) sequential composition is costly if it involves pruning, i.e. if admis-
sibility conditions have to be applied. Note that this additional mechanism need
not be applied if a bare numeral is combined with a common noun; (ii) the
maximality condition, too, can be said to involve an admissibility condition:
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Table 6. Comparison of semantic knowledge

only those supplement operations are admissible which are maximal among all
supplement operations. (i) and (ii) together yield thesis (iii): whenever a compo-
sition or an update operation involves an admissibility condition which restricts
the operation, a higher processing load is triggered.

6 Summary

In this article we developed a formal theory of the Löbner-Barsalou frame hypoth-
esis. The meaning of an expression is a team decorated tree, i.e. a pair consisting
of a strategy tree and a set of teams. Each team represents a possible reading
of an expression and therefore models one epistemic alternative of an agent.
Combining frames is defined in terms of two operations, one for each of the two
components of a frame. This framework therefore accounts for two interrelated
issues in a formal theory of frames: (i) How can frames be formally modeled?
and (ii) How can updates of frames be explicitly modeled?
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Abstract. This paper highlights the analogy of definiteness and posses-
sion by utilising the distinction between semantic and pragmatic unique-
ness as outlined in Löbner’s (2011) Concept Type and Determination
approach. Assuming, on the basis of the features [± unique] and [±
relational], a classification into the four logical types sortal, relational,
individual, and functional concept, nouns will be used either in congru-
ence with or deviating from their underlying type. I present evidence
from Germanic and Mayan languages for the following claims: (1) noun
uses that deviate from the underlying type tend to be reflected by overt
morphology; (2) in article split languages, phonologically ‘strong’ forms
indicate pragmatic uniqueness, thus, denote a function from [− unique]
to [+ unique], whereas ‘weak’ forms tend to be semantically redundant.
Regarding possession, ‘alienable’ morphology denotes a function from
non-relational to relational (pragmatic possession), whereas ‘inalienable’
morphology is restricted to semantic possession. Overall, split systems
imply a strong correlation between conceptual markedness and mor-
phosyntactic markedness.

Keywords: Type shift · Definiteness · Possession · Alienability ·
Definite articles · Typology · Compositional semantics

1 Introduction

In this paper I highlight the analogy of two types of nominal determination,
namely definiteness and possession, and their cross-linguistic manifestation.
I utilise the distinction between semantic and pragmatic uniqueness as outlined

The work reported here was carried out in the research Unit FOR 600 Functional
concepts and frames, and subsequently in the Collaborative Research Centre SFB 991
The Structure of Representation in Language, Cognition and Science, both sponsored
by the German Research Foundation (DFG). For comments and discussion I would
like to thank Adrian Czardybon, Thomas Gamerschlag, Corinna Handschuh, Lisa
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in the Concept Type and Determination (CTD) approach to definiteness in Löbner
(1985, 2011; cf. also Ortmann 2014). This perspective on determination will be
pursued in case-studies from, among others, Mayan and Germanic languages.

With respect to definiteness, the major assumptions of this approach are
the following. Unique reference comes about in two different manners. Seman-
tic uniqueness entails that the noun (or the noun phrase, in case of non-lexical
functional concepts) denotates an individual, and it exhibits unique reference
because of its lexical (or compositional) semantics. Pragmatic uniqueness, in
contrast, refers to those uses of nouns whose unique reference only comes about
due to the discourse context or context of utterance, which is the case with
anaphoric and deictic uses. The present paper underpins this approach by pre-
senting typological evidence that shows that noun uses that are not congruent
with the underlying type are indicated by overt morphology. I argue that the
morphosyntactic data speak in favour of the following generalisations: in lan-
guages that display a definite article split, the phonologically ‘strong’ definite
article denotes a function of the kind 〈〈e, t〉, e〉, while ‘weak’ forms tend to be
semantically redundant. As far as the category of possession is concerned, so-
called ‘alienable’ morphology (such as relator affix, classifier, and genitive case)
denotes a function of the kind 〈〈e, t〉, 〈e, 〈e, t〉〉〉. Overall, split systems display a
greater correlation of semantics and morphosyntactic markedness.

The paper is structured as follows: In Sect. 2, I outline the CTD approach.
In Sect. 3 I offer a small typology of adnominal possession and analyse alienability
splits in terms of the distinction between semantic and pragmatic possession, and
of type shifts from non-relational to relational noun concepts. Correspondingly,
Sect. 4 offers a small typology of definite article splits and provides an analysis
in terms of the distinction between semantic and pragmatic uniqueness, and of
type shifts from non-unique to unique noun concepts. Section 5 summarises the
major theses advocated in this paper.

2 Setting the Stage: The Theory of Concept Types
and Determination (CTD)

Löbner 1985 proposes a three-way distinction of nominal concept types that
distinguishes sortal, relational and functional concepts. The initial distinction
is further elaborated in Löbner (2011) in which he introduces a classification
that is based on two dimensions: arity and reference. More specifically, the con-
trasts that underlie these concept types are monadic vs. polyadic, and inherently
unique vs. not inherently unique. The resulting classification is illustrated in the
following table.

Thus the cross-classification of the properties ‘relational’ and ‘unique refer-
ence’ gives rise to the following noun types: SNs are one-place predicates; for
example, dog delimits the set of individuals that are dogs, hence its logical type
is 〈e, t〉. RNs do the same in relation to some possessor, thus characterising, for
example, the set of Hannah’s sisters, hence their type is 〈e, 〈e, t〉〉. INs unambigu-
ously single out individuals (often depending on a given time/world coordinate,
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not inherently unique inherently unique

not inherently sortal nouns (SN) 〈e, t〉 individual nouns (IN) e

relational dog, tree, adjective, water sun, weather, Mary,

prime minister

inherently relational nouns (RN) 〈e, 〈e, t〉〉 functional nouns (FN) 〈e, e〉
relational sister, leg, friend, blood mother, surface, head, begin

as with weather, temperature, prime minister, to be specified in terms of a situ-
ational argument in the sense of Löbner 1985). FNs do the same in relation to a
possessor argument; an example is the beginning of the 21st century. In this way,
INs and FNs are unambiguously assigned exactly one referent, so their logical
types are e and 〈e, e〉, respectively.

There are two different manners in which unique reference (or, in fact, ‘non-
ambiguous reference’, as Löbner 1985 calls it) can emerge. Semantic uniqueness
results from the meaning of the noun: underlying INs and FNs warrant the unam-
biguity of reference, as in the pope and John’s mother. By contrast, the unique
reference of underlying SNs and RNs as in the table, the man at the corner and
the daughter of John, respectively, does not come about because of the lexical
meaning of the nouns table, man and sister, but rather because of the discourse
and/or utterance context. For example, one of Hannah’s sisters has been already
mentioned, or Hannah happens to have exactly one sister. Accordingly, Löbner
(1985, 2011) speaks of pragmatic uniqueness.

Since all definite descriptions exhibit unique reference1, any occurrence of an
underlyingly SN or RN as a definite description implies its use as an individual
concept or functional concept, respectively. Consequently, the CTD notation
differentiates between a noun’s underlying type, such as SN, RN, IN, FN, and
its actual use, such as SC, RC, IC, FC. A major objective of the CTD approach
is to account for the flexibility in the usage of nouns. Virtually any noun can
be used as any one of the four concept types. In other words, type shifts (in
the sense of Partee 1986) into all directions are possible, from each concept type
to any other. As a consequence, a noun can be used either in congruence with
or deviating from its underlying concept type. In the case of the table we are
dealing with a type shift from [− unique] to [+ unique] (SN → IC). This shift is
indicated by a definite article in many languages. Moreover, in languages with
generalised article use such as English the definite article is also obligatory with
INs and FNs, that is, in cases of semantic uniqueness. In these cases it applies
vacuously. Indefinite uses of INs and FNs as in a sun and a mother of five involve
the opposite shift, thus, from IN and FN to SC and RC.

1 For controversial cases such as ‘configurational uses’ see Löbner (2011: 298) and
references there. See also Carlson & Sussman (2005) on ‘weak definites’ such as
(go to) the store, as well as Coppock & Beaver (2012) on anti-uniqueness effects of
predicative definites and also of argumental definites under negation.
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Fully along the lines of the opposition of semantic and pragmatic unique-
ness, I propose that the contrast of inalienable and alienable possession should
be re-interpreted as semantic and pragmatic possession. Semantic possession is
called so because some relation of affiliation is inherent to the lexical meaning of
the possessum. Pragmatic possession is called so because the POSS relation is
established by the context rather than by the lexical meaning of the possessum.
In the remainder of the paper I argue in favour of the following analogy: the
operation that converts [− relational] to [+ relational] (SN → RC, IN → FC) is
denoted by what is traditionally called alienable possession, in exactly the same
way as the change from [− unique] to [+ unique] is denoted by a strong definite
article in case of pragmatic uniqueness.

3 The Typology of Adnominal Possession: The Role
of Semantic vs. Pragmatic Possession

3.1 Alienability Splits

In the typological literature, the contrast pair of alienable vs. inalienable is used
to distinguish two (not necessarily mutually exclusive) classes of nouns with
respect to their morphosyntactic behaviour in possessive contexts. Looking at
alienability splits across languages inevitably brings about the question as to
their conceptual basis:

Inalienable possession (which corresponds to semantic possession) is char-
acterised by inherent affiliation and by relations that are not subject to the
possessor’s choice or control: First and foremost among these are kinship, body
parts, part-whole, and location.

The major characteristics of alienable possession (which corresponds to prag-
matic possession) is temporary affiliation, where the possessor typically has con-
trol over the possessum. Accordingly, the function of the possessum (eating,
drinking, growing, tool, etc.) for the possessor is of relevance. It is precisely in
this area that the notion ‘possession’ can be understood in the literal sense,
like that of legal ownership. Often the relation between the two individuals is
conceptualised as a contextually instantiated relation, dependent on the speech
situation, as in my chair, which can denote the chair that I am sitting on at the
moment.

In order to relate this conceptual contrast to the morphology and syntax of
natural languages, I give a brief overview of some major modes of expressing an
(in)alienability distinction in possession. The nouns on the left in the following
examples (1a), (2a) and (3a) are semantically relational, FNs in terms of the
classification above. Being FNs, they are inherently possessed, and therefore
directly combine with a possessor affix or a possessor phrase. This corresponds
to the typological notion of inalienable possession. By contrast, the nouns in
(1b) to (3b) are sortal and can therefore be combined with a possessor only after
they are overtly morphologically extended:
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• Possessor agreement is directly attached to the noun rather than mediated by
a connective: In contrast to the FN stem @taly ‘mother’, the SN stem ewa:
‘house’ must be morphologically extended by the connective prefix -@n in order
to be possessed.2

(1) Diegueño (Yuman < Hokan; Mexico; after Nichols 1992: 117):
a. P-@taly

1sg-mother
‘my mother’

b. P-@n -ewa
1sg-poss-house
‘my house’

The term ‘connective’ (or ‘relator’) is merely an informal label. I will argue in
the following subsection that these markers establish the relation of possession,
hence my annotation ‘poss’.

• Possessor agreement is directly attached to the noun rather than attached to
a classifier:

(2) Paamese (Oceanic < Austronesian, Vanuatu; Crowley 1996: 384ff)
a. yati-n

head-3sg
ēhon
child

‘the child’s head’

b. ani
coconut

emo-n
posscl(potable)-3sg

ēhon
child

‘child’s drinking coconut’

Possessive classifiers like that in (2b) can be analysed as encompassing the func-
tion of a relator plus some additional, more specific information concerning
the sortal properties of the possessum (for example, edibles, domestic animal).
Sometimes possessive classifiers specify the relation POSS as being conceived as
permanent or temporary, or characterising the utility of the possessum for the
possessor. As a widespread typological strategy, possessive classifiers serve as the
morphological base to which the possessor agreement is attached Seiler (1983).

• The possessor is realised as a prefix rather than as a free (possessive or per-
sonal) pronoun:

(3) Eastern Pomo (< Hokan; California), after Nichols 1992: 118)
a. ẃı-bayle

1sg-husband
‘my husband’

b. wáx
1sg.gen

šári
basket

‘my basket’

2 In the glosses, I use the following abbreviations of grammatical categories: acc
‘accusative’, aux ‘auxiliary’, comp ‘complementiser’, cop ‘copula’, dat ‘dative’, def
‘definite article’, dem ‘demonstrative pronoun’, derel ‘de-relativisation’, di ‘distal
determination’, e ‘ergative’, ep ‘epenthetic consonant’, f ‘feminine’, gen ‘genitive’,
imp ‘imperative’, inf ‘infinitive’, loc ‘locative’, m ‘masculine’, n ‘neuter’, neg ‘nega-
tion’, nom ‘nominative’, non3rd, ‘1st or 2nd person’, part ‘participle’, past ‘past
tense’, pl ‘plural’, poss ‘relation of possession’, posscl ‘possessive classifier’, pres
‘present tense’, refl ‘reflexive pronoun’, rel ‘relative clause marker’, sg ‘singular’,
str ‘strong article form’, superl ‘superlative’, wk ‘weak article form’ ; 1, 2 and 3
represent first, second and third person, respectively.
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Significantly, all of the illustrated contrasts are attained by straight affixation
or juxtaposition of the possessor on the inalienable side, and ‘mediation’ by a
classifier, a connective, a free (possessive) pronoun, or a case marker on the pos-
sessor on the alienable side. As a result, the generalisation is that less conceptual
distance is mirrored by less morphosyntactic complexity (see the introduction
to Chappell & McGregor (1996) and references there).

Obviously, one and the same concept need not be treated alike in all languages
with an alienability split. There is in fact considerable cross-linguistic variation as
to the class of nouns that may enter inalienable possession. Aspects of language-
specific demarcations are discussed, among others, in Seiler (1983), in Nichols
(1988: 572) regarding North American languages, as well as in the contributions
of Chappell & McGregor (1996). A theoretical implication is that the propensity
of [+ relational] nouns to undergo the inalienable construction is a default that
may be overwritten by idiosyncratic specification.

3.2 Type Shifts in Possession

In this section I show that the distinction of semantic vs. pragmatic possession
largely accounts for what is known as the alienability contrast: Semantic pos-
session implies that the relation between the noun’s referential argument (the
possessum) and the possessor argument is inherent to the noun’s lexical seman-
tics. Pragmatic possession implies that the POSS relation is only contextually
established, and often depends on the utterance situation.3 I argue that morpho-
logical markers of alienable possession such as connectives and classifiers should
be interpreted as establishing a non-inherent, hence pragmatic POSS relation.
Specifically, the goal is to motivate the following claim:

(4) Claim: Pragmatic possession involves the type shift from [− relational]
to [+ relational].

This programmatic analysis, which follows the programme outlined in Löbner
2011, will be pursued more radically here, in that the assumed shift operation
will be paired with morphosyntactic material that has the function of denoting
the operation.

The type shift mentioned, the effect of its application to a SN, and finally the
discharging of the possessor argument is schematically and successively sketched
in (5).

(5)

a. sortal noun, e.g. house: λx.house(x)
b. template of poss shift SC → RC: λN.λy.λx.[N(x) ∧ poss(y, x)]
c. (b) applied to (a) λy.λx.[house(x) ∧ poss(y, x)]
d. (c) applied to possessor John: λx.[house(x) ∧ poss(John’, x)]

3 In Barker (2011: 1113) this distinction is labelled lexical vs. pragmatic interpreta-
tion; see also Vikner & Jensen (2002: 194–216) for a similar though not identical
distinction.
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Note that a template that is equivalent to the POSS type shift (b) is also assumed
by Barker (1995; 2011: 1114) for English, based on compositional semantic
grounds rather than on typological evidence; cf. also Vikner & Jensen (2002)
and Partee & Borshev (2003). I will now look closer at the relevant data in
terms of a case study from two Mayan languages.

3.3 ‘Alienable’ Morphology Indicates Pragmatic Possession
([−relational]→[+relational])

In this and the following subsection, I provide a case study which builds on
earlier joint work with Corinna Handschuh (cf. Ortmann 2004). It will be shown
that Mayan languages are especially explicit in the morphological encoding of
noun type shifts, in both directions. Let me first illustrate how non-relational
nouns (SNs) are transformed into RCs by means of suffixation of -il, and by
vowel lengthening, respectively.

Yucatec: (6a,c) displays the SNs nah ‘house’ and ha ‘water’, without a posses-
sor, in contrast to the possessive use in (6b,d), which requires the suffix -il.4

(6) Yucatec Mayan (Lehmann 1998: 56; Tozzer 1921: 50)
a. le

def
nah-o’
house-di

‘the house’

b. in
1sg.e

nah-il
house.poss

‘my house’

c. ha
water
‘water’

d. u
3sg.e

ha-il
water-poss

ťs’ en
well

‘the water of the well’

Crucially, alienably possessed nouns require the suffix -il irrespective of whether
they are only combined with a possessor agreement clitic (in in (6a)), or with
a lexical possessor ťs’en in addition to u as in (6d). The class of nouns that
follows this pattern is according to Lehmann (1998: 61) the largest and most
productive; for inalienably possessed nouns see Subsect. 3.4.

Mam: Mam resembles Yucatec in that a large group of sortal nouns obligatorily
undergo an overt change in order to be able to combine with a possessor. Consider
the examples in (7).5

(7) Mam (Mayan; England 1983: 67)
a. xaq

rock
‘rock’

b. n-xaaq=ai
1sg.e-rock-poss-non3
‘my rock’

c. ne’l
sheep
‘sheep’

d. n-nee’l=a
1sg.e-sheep.poss-non3
‘my sheep’

In contrast to the Yucatec strategy of employing an affix, Mam uses a prosodic
strategy, namely that of vowel lengthening. Cross-linguistically it is not unusual
for grammatical features to be marked supra- or subsegmentally; for example, by
grammatical tone in African languages, or quantitative ablaut in Germanic. In

4 See Bricker et al. & Po’ot (1998: 358f) for other suffixes with essentially the same
function, as well as for further details concerning possession in Yucatec.

5 As in Yucatec, the possessor clitics belong to the ergative paradigm (‘set A’ in the
Mayanist tradition).
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the case of Mam, the category of POSS is prosodically realised, more precisely,
by a vowel weight unit, that is, a mora.6 As in the case of Yucatec, it is obvious
from the examples in (7) that the morphological operation that makes nouns
‘possessable’ is clearly separated, morpho(phono)logically as well as semantically,
from possessor agreement. In the same way that -il is distinct from in in Yucatec,
lengthening is distinct from n- in Mam in that the first establishes the POSS
relation, and the latter specifies the possessor.

There are nouns for which the alternation is less transparent because of
phonological irregularity; for example, the vowel following the stressed syllable
may be deleted, as in tz’lom – n-tz’áalm-a=ya ‘my plank’. Sometimes the alter-
nation is even entirely blurred by prosodic factors. Mam does not allow for more
than one long vowel per word. Since it does not allow for super-long vowels
either, there is no possibility of lengthening for a stem with an underlying long
vowel: b’ee – n-b’ee=ya ‘my road’, jaa – t-jaa-t=a xu’j ‘the woman’s house’
(England 1983: 34, 143). In this (apparently frequent) pattern, the possessed
stem of a noun does not differ from the unpossessed variant. However, the fact
that Yucatec and its relative Mam behave analogously in essential regards lends
further support for my analysis of the POSS shift as being overtly realised.

Overall, the generalisation is that in the possessed use, alienable nouns in
Mam are subject to vowel lengthening unless they already contain an underlying
long vowel. Thus, the POSS shift is realised by filling an abstract vowel position.

Representations: In order to account for the above data I pursue a com-
positional analysis that pairs the involved semantic type shift operations with
the involved morphological exponents. In particular, the relator morpheme is
analysed as the morphological exponent of establishing the relation POSS for
alienable nouns as in (5b), thus, denoting the function from [− relational] to [+
relational].

For the state of affairs in Yucatec, we can assume the following composition:

(8)

a. sortal noun: nah: λx.house(x)
b. overt poss shift: -il : λN.λy.λx.[N(x) ∧ poss(y, x)]
c. result of poss shift: nah-il : λy.λx.[house(x) ∧ poss(y, x)]
d. discharge of possessor: in nah-il : λx.[house(x) ∧ poss(speaker, x)]

As regards the Mam data, we can assume that the exponent of the POSS-
operation is a prosodic element (much like tense is marked by grammatical tone
in some Bantu languages). The lengthening, then, is the prosodic effect of adding
a morpheme that merely consists of a syllable weight position, devoid of any seg-
ment. In prosodic phonology, syllable weight positions are referred to as moras.
Consequently, the exponent of the POSS shift in Mam is a mora (µ).

6 In addition to vowel lengthening, some nouns undergo further regular vowel-related
processes when they are possessed (cf. England 1983: 44). For example, the processes
involved in n-paatzán=a ‘my sugarcane’ (with the unpossessed variant ptz’on) are
stress assignment, prevocalic glottalisation, and reduction of unstressed vowels, hence
the phonetic form [mpá:tz’ en e].
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(9)

a. sortal noun: ne’l : λx.sheep(x)
b. overt poss shift: µ: λN.λy.λx.[N(x) ∧ poss(y, x)]
c. result of poss shift: nee’l : λy.λx.[sheep(x) ∧ poss(y, x)]
d. discharge of possessor: nee’l=la: λx.[sheep(x) ∧ poss(speaker, x)]

What I propose, then, is a compositional solution under which a semantic oper-
ation is paired with morphological material. With respect to the semantic status
of the possessor this solution simply entails that all possessors, including mark-
ers of possessor agreement, are logically treated as individuals, devoid of any
relationality of their own. Thus, possessor agreement markers have the same
semantics as personal pronouns (where the subscript ‘U’ represents the utter-
ance parameter relative to which the extension of the pronoun is determined).

(10) possessor clitic as entity: in: ιz[z = speakerU]

In this way, the representation can be kept as simple as possible. Whatever is
assumed as the semantics of personal pronouns, it will sufficiently characterise
the clitics at issue. This is a consequence of the POSS shift, and it has two
further advantages.

First, it correctly predicts that in the default case [+ relational] nouns such
as ‘mouth’ take a possessor clitic without prior application of the POSS shift
due to the relational semantics of the noun; see (14a). Second, it accounts for the
fact that the same set of clitic agreement markers occurs with transitive verbs,
specifying the ergative argument and also having pronominal status (the Mayan
language generally exhibiting the pro-drop property).

Both of these facts would be unexplained if one were to assume a special
semantics for these markers that would make reference to possession. This dis-
tinctive POSS semantics would have to be ‘turned off’ for inalienable possession
and for the subject (or object, according to the language), which involve the
same markers. It is obvious that this would result in undesirable polysemy.

Under the present approach, possessive classifiers are also accounted for
straightforwardly. For a fairly large set of SNs in Yucatec, the operation for
pragmatic possession is achieved by possessive classifiers, especially by those for
domestic animals and for food; consider (11).

(11) Yucatec Mayan (Lehmann 1998: 62f., 38)
a. in

1sg.e
w-o’ch
ep-posscl

ha’s
banana

‘my banana’

b. in
1sg.e

w-àlak’
ep-posscl

k’ée’n-o’b
pig-pl

‘my pigs’

These classifiers can be represented as in (12). In addition to contributing the
POSS operation as in (8) and (9), each classifier imposes its sortal restrictions
on the possessum.

(12) àalak’ : λN.λy.λx.[N(x) ∧ domestic animal(x) ∧ poss(y, x)]
o’ch: λN.λy.λx.[N(x) ∧ food(x) ∧ poss(y, x)]
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3.4 ‘Inalienable’ Morphology Indicates Semantic Possession

In the previous I have analysed the morphological strategies of changing SNs
into RCs. Let us now turn to the converse operation. Recall from the (a) exam-
ples of (1) to (3) above that the notion of semantic possession entails that the
POSS relation is inherent to the lexical meaning. This corresponds to the fact
that inalienable possession is morphologically unmarked. But this in turn brings
about the question of markedness in non-possessed uses of relational nouns.

In numerous genetically unrelated languages of the Americas and of Melane-
sia, an overt morphological marker is required if underlying [+ relational] nouns
(RNs and FNs) are used as SCs and ICs, that is, without a possessor argument.
While this operation is occasionally referred to as ‘absolutivisation’, Seiler (1983)
proposes the term ‘de-relationisation’, hence I gloss the marker at issue as derel
in the following. Again, the Mayan languages prove to be particularly explicit in
encoding the operation.

(13) Mam (Mayan, Guatemala; England 1983: 69)
a. n-yaa’=ya

1sg.e-grandmother=non3rd

‘my grandmother’

b. yaa-b’aj
grandmother-derel
‘grandmother’

Being relational, the nouns of this class enter the possessive construction as
inalienable, that is, without a POSS suffix or vowel lengthening. In order to use
such a noun without a possessor, a suffix must be attached that changes the
noun into an absolute (that is, sortal) noun. There are two suffixes that fulfil
this function: -b’aj is used with body part and kinship terms, and -j with nouns
denoting clothing; cf. w-aam-a ‘my skirt’ vs. aam-j ‘skirt’. As far as terms for
nourishment are concerned, some take -b’aj, while others take -j.

Likewise, Yucatec employs the suffix -tsil for licensing the non-possessed use
of a relational noun:

(14) Yucatec Mayan (after Lehmann 1998: 70ff)
a. in

1sg.e
chi’
mouth

‘my mouth’

b. le
def

chi’-tsil-o’
mouth-derel-di

‘the mouth’

According to the perspective taken here, we are dealing with a morphologically
overt operation that reduces the argument structure of the noun, much in the
same way as passive and antipassive morphology. The variant with reduced argu-
ment structure is morphologically marked, which corresponds to the fact that it
is derived from the variant with the full argument structure.7

7 Another instance of de-relationisation comes from Teop (Western-Oceanic, Papua
New Guinea). Ulrike Mosel (p.c.) informs me that the suffix -na serves the same
function, as in sina-na mother-derel ‘(a) mother’. One more case in question is
Cahuilla (Uto-Aztecan; Seiler 1983).
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In terms of concept types, then, de-relativising suffixes can be conceived of
as denoting a shift from [+ relational] nouns to [− relational] concepts. This is
represented in (15).8

(15) ‘derelative’ affixes: -b’aj, -j, -tsil : λR.λx.∃yR(x, y)

The operation corresponds to what is called a ‘detransitivization type-shifter’
by Barker (2011: 1114f), conceived of as a silent operator. In some languages,
a de-relativising shift can be followed by the reverse, thus, [+ relational] → [−
relational] → [+ relational]. The result of this sequence of operations is that
the possessum is provided with a contextual (rather than inherent) relation of
possession. Consider the difference that Koyukon makes for one and the same
noun between inalienable use, which bears on the inherent part-whole affiliation,
and alienable use, which bears on a contextual association with the possessor
((16b) vs. (16c)).

(16) Koyukon (Athapaskan < Na-Dene; Thompson 1996: 666f)
a. nelaane

meat
‘meat, flesh’

b. be-nelaane
3sg-meat
‘his/her (own) flesh’

c. se-k’e-nelaane
1sg-poss-meat
‘my (animal’s) meat’

In (16c), in order for the inalienable possessor to be unrealised, a shift RN →
SC as represented in (15) must apply, albeit in a ‘silent’ fashion like in English.
Subsequently, the prefix k’e- is applied, which denotes the function SC → RC and
establishes the relation POSS for alienable nouns just like the Mayan markers
represented in (9b) and (10b), and the alienable possessor is saturated in terms
of the pronominal prefix specifying first singular. The theoretical implication is
that alienability distinctions may interact with further type shifts.

This leads to the important issue of ‘temporary’ (in)alienability assignments.
Commonly, nouns are not invariably assigned to one of the two classes; that is,
one often encounters so-called temporary (or ‘fluid’) (in)alienability assignments
(not to be confused with temporary possession, as opposed to permanent pos-
session) that come about by different conceptualisations. Consider the following
contrast pair, in which the alienably possessed variants are marked by a free
pronoun and a preposition, respectively:

(17) Patpatar (Oceanic < Malayo-Polynesian; Chappell & McGregor 1996: 3)

a. a
def

kat-igu
liver-1sg

‘my liver’

b. agu
1sg

kat
liver

‘my liver (that I am going to eat)’

In order to illustrate how the present approach captures temporary possession,
I offer the representation in (18). The operation (18c) existentially binds the
8 Strictly speaking, in the case of FNs (as opposed to RNs) it takes the combination

of two shifts to arrive at an SC. One is de-relativisation as in (15), the other is [+
unique] → [− unique] (‘de-functionalisation’, as it were) and will be briefly touched
in 4.2. The effect of the two shifts is represented below in (18).
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argument that is originally related to the possessum, and at the same time
provides a different relation between which is contextually instantiated (hence
the subscript ‘context’), thus introducing an alienable possessor.

(18) Representation of temporary possession in Patpatar

a. scheme for FNs:
λy.ιx[(SortalComponent(x)) . . . ∧ (RelationalComponent(x, y))]

b. instantiation by kat ‘liver’:
λy.ιx[liver(x) . . . ∧ part-of(x, y)]

c. shift FN → SC plus contextual relation (thus, FN → SC → RC):
λFN.λz.λx.∃y[FN(x, y) ∧ posscontext(z, x)]

d. (18c) applied to (18b):
λz.λx.∃y[liver(x) ∧ part-of(x, y) ∧ posscontext(z, x)]

The result (18d) can be applied so as to discharge the possessor in exactly the
same way as (9d).

Summing up, the essence of this section is that the distinction of semantic
vs. pragmatic accounts for what is known as the alienability contrast: ‘alienable’
morphology (esp. connectives, classifiers) denotes a function from SN to RC.
‘Inalienable’ is morphologically unmarked because the relation of affiliation is
inherent. In this respect, the inalienable construction corresponds to either weak
or absent definite articles, which will be the object of the following section.

4 The Typology of Definite Article Splits: The Role
of Semantic vs. Pragmatic Uniqueness

The major tenet of the uniqueness approach to definiteness (Löbner 1985, 2011)
is that any definite noun phrase indicates unique reference, meaning that its head
noun is used as a functional concept (more precisely, IC or FC). It has already
been pointed out above that, in the same way as possession comes about in two
ways, this also holds true of unique reference: on the one hand, uniqueness may
result from the meaning of the noun itself. This is the case with FNs and INs, as
in the temperature (in Tbilisi at noon). On the other hand, uniqueness can result
from the linguistic or extra-linguistic context; that is, in cases of anaphoric uses
of SNs or of situational definiteness (the man at the corner). This distinction,
referred to as semantic uniqueness versus pragmatic uniqueness, motivates the
asymmetries with regard to the distribution of definite articles that are found
cross-linguistically.

4.1 Article Splits

Based on the distinction between semantic and pragmatic uniqueness, Löbner
(2011) posits a scale whose elements are arranged according to the restriction in
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the choice of possible referents. In (19) I render the scale in the slightly revised
version established in Ortmann (2014).9

(19) Scale of uniqueness (Ortmann 2014: 314, adapted from Löbner 2011):
deictic with SN < anaphoric with SN < SN with establishing relative
clause < relational DAA < part-whole DAA < non-lexical FC < lexical
IN/FN < proper name < personal pronoun

The steps on the scale of uniqueness depict the degree of restriction in the
potential of noun referents. The choice among possible referents of the head noun
is necessarily limited towards the right end, where semantic uniqueness is located.
The choice of referents gets increasingly broader from right to left, in line with the
fact that for SNs to refer uniquely, the dependence on the context is high (hence
the notion pragmatic uniqueness). The basic hypothesis of the CTD theory is
that the distinction between semantic and pragmatic uniqueness, arranged in a
more graded fashion on the scale in (19), is the basis of all conceptually governed
article splits. Concretely, the scale is connected with the following empirical
predictions:

(20) Predictions entailed by the scale of uniqueness:
1. A decrease of obligatoriness in the use of articles as one moves from

the left end to the right. This decrease correlates with a decrease of
functional load.

2. Diachronically, the use of the article spreads from left to right along
the scale, thus eventually covering also those areas where it is func-
tionally redundant.

An instance of Prediction 2 is the use of articles with proper names for persons
in, for example, Modern Greek and colloquial German. It is a statement with
respect to the grammaticalisation of definiteness, in harmony with and corrobo-
rated by the generalisations in Himmelmann (1997) and Lyons (1999: 275ff). As
regards the implicational statement of Prediction 1, I refer to those languages
in which definiteness markers systematically occur in some contexts and not in
others as exhibiting a split article system. The contexts of pragmatic uniqueness
will be among those in which definite articles occur. Since articles denote a func-
tion 〈〈e, t〉, e〉 from SN/RN to IC/FC in these contexts, their ‘functional load’
(i.e., their importance) is highest here. Accordingly, the diachronic expectations
expressed by the scale are that the use of articles spreads from left to right.
This is the typical development of any language in which articles emerged from
erstwhile demonstratives, and German is no exception. In Old High German,
definite articles are only obligatory with anaphoric NPs, but typically missing

9 The notion ‘establishing relative clause’ goes back to Hawkins (1978, 138ff.) and
will become relevant in 4.4.1. ‘DAA’ represents ‘definite associative anaphora’ (also
known as ‘bridging’). Like other anaphora, DAAs are anchored by the referent of a
previously mentioned NP; e.g. . . a house . . . the door . . . . Non-lexical FCs come about
by combining nouns (of any type) with ordinals or superlative adjectives and will be
discussed in 4.3.1.
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with FNs as in example (21a), in fact even with an FC that results from an
establishing relative clause as in (21b) (so-called autophoric reference).

(21) Old High German (Luke, 2, 46; translation from 8th century)

a. . . . her
he

uuas
was

fon
from

huse
house

inti
and

fon
from

hiuuiske
line

Dauides.
David’s FCs

b. . . . wurDun
were

taga
days

gifulte
fulfilled

thaz
that

siu
she

bari.
gave birth autophoric

The passage confirms the central point of this section, namely that semantic
uniqueness is unmarked in the sense of not being overtly indicated by a deter-
miner, in harmony with the uniqueness scale and the predictions in (20).

As far as the right edge of the scale is concerned, it is fairly rare for personal
pronouns to be accompanied by articles. In Maori, the article variant a is used
with proper names and personal pronouns of all persons: ki a au prep def
pron1sg ‘to me’, a koutou def pron2pl ‘you’, i a raatou obj def pron3pl
‘them’ (Bauer 1993, 4, 371, 368; cf. also note 12). On the other hand, it is quite
common for languages not to have definite articles at all. This is the case if
demonstratives do not obligatorily occur with anaphoric nouns and, especially,
if they are not used with definite associative anaphora either.10

The fact that there is considerable variation, and that languages extend the
distribution of articles to environments where they are redundant, suggests a
tension of competing factors. These factors are economy on the one hand (to
be stated as “Avoid overt operators where they are vacuous”), and the uniform
syntactic behaviour of nouns on the other hand, roughly: All NPs with unique
reference should receive the same determiner. Since any language with articles
has to balance these conditions it is not surprising that virtually all article
languages show some split.

The fundamental claim of Ortmann (2014) is that language-specific article
asymmetries are of one of the two sorts mentioned in (22).

(22) Split I: A leftmost segment of the scale is marked by the definite article,
the rest remains unmarked.
Split II: Two segments of the scale (normally pragmatic and semantic
uniqueness) aremorphosyntactically distinguished in termsof different arti-
cle forms, each of which will be subject to the Predictions 1 and 2 of (20).

Examples of Split I systems are Old High German (as well as the previous stages of
all other languages with subsequent generalised article use), Old Georgian
(cf. Boeder 2010, Ortmann 2014: 315–318) and West Slavic (more on which below).

The Romance language Catalan is an instance of Split II. According to
Hualde (1992), Catalan, especially the variety of the Balearic Islands, exhibits
the following sets of articles: the forms (e)l, la, els, les, thus, l-forms as in
other Romance languages. They occur with “nouns that have a unique refer-
ent” (Hualde 1992: 281). By contrast, in anaphoric contexts the forms es, sa,

10 For these and other criteria see Himmelmann (1997).
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ses, which like French ce derive from Latin ipse, are used. A minimal pair is
l’Església ‘the (Catholic) Church’, which is semantically unique, and the prag-
matically unique s’església ‘the church (building)’. Incidentally, we are actu-
ally dealing with a three-way split, since in the variety of the Balearic Islands
proper names are preceded by particular article forms, en, na, that is, by a
preproprial article, e.g. en Joan. Another case in point is Maori, as described
by Bauer (1993), which features te/ngaa as the more widely used article, oblig-
atory in cases of semantic uniqueness (INs, FNs, superlative FCs), moreover
optional in anaphoric contexts. The forms taua/aua are confined to anaphoric
and autophoric noun phrases.11

As we will see, the grammaticalised distinction between semantic and prag-
matic uniqueness in terms of a split II system is especially common in West-
Germanic languages.

4.2 Type Shifts in Definiteness

The analysis for definiteness splits is fully parallel to the analysis of possession
in Sect. 2. Consequently, the claim I will defend is the following:

(23) Claim: Pragmatic uniqueness involves a shift from [− unique] to [+
unique]. ‘Strong’ articles overtly denote this operation, their logical type
thus being 〈〈e, t〉, e〉. ‘Weak’ articles indicate semantic uniqueness. They
signify an identity mapping 〈e, e〉.

Notice that since the logical type 〈e, t〉 subsumes SNs as well as RNs whose
argument has been saturated, the ‘strong’ article operation mentioned in (23)
captures both subtypes of [− unique]. Furthermore, note that analogously to de-
relativisation as analysed in 3.4, we can conceive indefinite uses of INs and FNs
(e.g., a sun, many fathers of this success, a mother) as ‘de-functionalisation’. In
other words, these uses involve a shift in the opposite direction, that is, IN →
SC, FN → RC, and FN → SC, respectively (〈e, 〈e, t〉〉, and 〈〈e, e〉, 〈e, 〈e, t〉〉〉, and
〈〈e, e〉, 〈e, t〉〉).12
11 Besides, there is a special article form that is found with proper names (like in

Catalan), and moreover with pronouns. Note that Catalan and Maori are not unusual
in featuring so-called preproprial articles. One source of the latter, e.g., in dialects
of Norwegian, are third person forms of personal pronouns; cf. Matushansky (2008).

12 An anonymous reviewer (Reviewer 1) raises the question as to the exact nature
of such a shift from e to 〈e, t〉; specifically, if one should exclusively think of it as
Partee’s (1986) IDENT, in which case there would be a problem with respect to a
presupposition of existence (cf. Coppock & Beaver 2012: 533f). Essentially, we are
dealing with a variety of shifts of which IDENT is only one. As a matter of fact,
Partee (1986: 122) herself proposes another e to 〈e, t〉 shift, labelled PRED, which
returns properties from their entity-correlates. One other is, following Löbner (2011:
284f), a shift that is operative with proper names in predicative or indefinite use,
as in He’s an Einstein. Yet another instance is a shift from an individual constant
into a predicate, by way of making use of its descriptive contents, as it seems to be
necessary, e.g., for a moon.
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In the following subsections, the goal is to provide evidence for the claim in
(23). Further instances are discussed and analysed in Ortmann (2014).

4.3 ‘Zero’ and Weak Articles Indicate Semantic Uniqueness

4.3.1 The ‘Zero’ Article Implies Semantic Uniqueness: Split I
A paradigm case of a Split I system (that is, article as opposed to no/zero
article) is that of Colloquial Upper Sorbian (Obersorbische Umgangssprache)
as analysed by Breu (2004). The definite article was grammaticalised from the
former demonstrative pronoun tón, ta, to. In present-day use it is found in many
environments (even including some environments of semantic uniqueness) but
not all. Crucially, the article does not occur with lexical INs or FNs such as
unicums and typical institutions:

(24) Upper Sorbian (< West Slavic; Breu 2004: 30)
a. s�lónco

sun
‘the sun’

b. Tame
there

jo
aux

dwórnǐsćo.
station

‘There’s the station.’

c. Tame
there

jo
aux

cyrkej.
church

‘There’s the church.’

This behaviour is shared by another West Slavic language, viz. the Upper Silesian
variety of Polish, as analysed by Czardybon (2010). In Upper Silesian, the defi-
nite article, grammaticalised from the demonstrative tyn, ta, te, is also excluded
with lexical INs and FNs:

(25) Upper Silesian (< West Slavic; Breu 2010: 37)
To
def.n

jest
cop.3sg.pres

chyba
probably

koniec
end

tego
def.gen.m

film-u.
film-gen

‘This is probably the end of the film.’

For all contexts further left on the scale of uniqueness, articles are either optional
or even obligatory. For example, Czardybon (2010: 35) states that articles are
commonly missing with non-lexical ICs and FCs, as in Nojlepszo zoza jes moja
‘The best sauce is mine’; however, Adrian Czardybon (p.c.) informs me that at
closer inspection it turned out that in most cases articles can in fact optionally
be used. That the article is realised with all steps still further to the left of the
scale will be illustrated in the following subsection.

4.3.2 The Weak Article Implies Semantic Uniqueness: Split II
Split II pertains to a morphological opposition of two (paradigms of) definite
articles. Often one is a phonologically reduced form of the other. For this rea-
son, the contrast is commonly referred to as ‘strong’ vs.‘weak’. In fact many, if
not most, spoken varieties of German have developed weak article forms, which
indicate the presence of an IN or an FN.

Consider the definite articles of the Rhineland, here represented by the
Ripuarian dialect of Central Franconian.
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(26) Definite articles of Kölsch (Ripuarian); after Tiling-Herrwegen (2002:
150)

masc fem neuter plural

strong nom/acc: dä die dat die

dat: dä dä däm dä (/denne)

weak nom/acc: der de et de

dat: dem der dem de

The weak article occurs with all subtypes of semantically unique concepts (INs or
FNs) such as proper names (der Pitter, et Marie) and abstract nouns (et Levve
‘life’). (27) provides a so-called ‘weak definite’ noun use (that is, not showing
particular reference; cf. Carlson & Sussman 2005):13

(27) Kölsch (< C. Franconian < West Germanic; Tiling-Herrwegen 2002: 142):
Nemm der Schirm met, et es am rähne!
take def.m.wk umbrella with 3sg.n be.3sg at rain.inf
‘Take your (lit.: the) umbrella, it is raining.’

A very similar distribution is found for Alemannic, the dialect group that com-
prises Swiss German as well as the dialects of south-western Germany and the
westernmost part of Austria. Studler 2014 speaks of the opposition as ‘full’ and
‘reduced’ article forms. The reduced forms de, d, s occur in contexts of inherent
uniqueness. This is illustrated in (28) by a (non-lexical) FN and an IN.

(28) Swiss German (Alemannic < West Germanic; Studler 2014: 155)
a. s

def.n.wk
grööscht
largest

Schtück
piece

Chueche
cake

‘the largest piece of cake’

b. de
def.m.wk

Mond
moon

schiint
shine.3sg

‘the moon is shining’

In accordance with our expectations, then, [+ unique] nominals take weak article
forms in the dialects under consideration.
13 An anonymous reviewer (Reviewer 2) rightly points out that underlying SNs such as

‘umbrella’ and ‘dog ’ must be turned into an IC in order for the weak article to be
available in cases such as (27). The reviewer asks why this shift is not associated with
morphological marking. As a matter of fact, many, if not most, shifting operations
are silent rather than overtly marked. Typically, they are lexically restricted and
depend on world knowledge, as in the case of ‘weak definites’ ; other instances are
IN → SC shifts as discussed in note 13 and cases of polysemy. It appears that with
regar to operations among nominal concept types, only the most productive ones
tend to be overt. Note that these are mainly the ones that rely on contextual rather
than lexical information: the appropriate context to identify the antecedent of an
anaphoric NP (SC → IC) or a non-lexical POSS relation (SN → RC). Similarly,
existential binding, which is involved in the operation [+relational] → [-relational],
does not require lexical information either. More discussion of the shifting operations
in detail is found in Löbner (2011: 310–312).



Uniqueness and Possession 251

4.4 (Strong) Articles Indicate Pragmatic Uniqueness ([− Unique]
→ [+ Unique])

4.4.1 Article as Opposed to No Article: Split I
While in Upper Silesian tyn, ta, te were shown to be rejected in contexts of
semantic uniqueness, in anaphoric and autophoric contexts the occurrence of
these forms is obligatory (and they can therefore be said to function as definite
articles). The notion of autophoricity implies that unique reference is established
by restricting the noun’s potential referents in terms of a relative clause as in
(29), hence the notion of an ‘establishing relative clause’.

(29) Upper Silesian (< West Slavic; Czardybon 2010: 34)
Jak
how

sie
refl

nazywo
call.3sg

tyn
def.acc.m.sg

ptok,
bird

co
rel

kradnie?
steal.3sg

‘What is the name of the bird that steals?’

In Upper Sorbian, contexts of anaphoricity and autophoricity also require the
article, as shown in (30a) and (30b), respectively.14

(30) Upper Sorbian (< West Slavic; Breu 2004: 39, 22)

a. Papa
Papa

jo
aux

s
from

woza
car

pano�l
fall.pret

ha
and

ji
3sg

sej
refl

ruku
hand

z�lama�l.
break.pret

Ta
def.f.sg

ruka
hand

dyrbi
must.3sg

nĕk
now

dwĕ
two

nĕzli
weeks

we
in

gipsu
cast

wostać.
stay

‘Daddy fell from the cart and broke his hand. The hand now has
to stay in the cast for two weeks.’

b. Kóždy
everyone

dóstane
get.3sg

tón
def.acc.f

žonu,
wife

kǐz
rel.f

sej
refl

wón
3sg.m

zas�luži.
deserve.3sg

‘Every man gets the wife that he deserves.’

Notice that žonu,‘wife’ in (30b) must have previously undergone a silent shift
from FN to SC, to be combinable with an establishing relative clause with the
function of contrasting different sorts of wives.

In summary, where Split I articles occur they indicate pragmatic uniqueness,
hence formally denoting a function that takes SN to IC.15

14 Thanks to Adrian Czardybon for providing the glosses for the examples from Sorbian.
15 In contrast to Upper Silesian, in Upper Sorbian the article is also obligatory with non-

lexical functional concepts (i.e., ICs and FCs that come about by ordinal numbers
and superlatives, which comprises a function over the domain that is characterised
by the noun predicate), provided the NP is the comment rather than the topic of the
clause. Similarly, associative anaphora (DAAs) tend to be generally preceded by the
article in Upper Sorbian (Breu 2004: 20, 41), whereas in Upper Silesian this tends
to be restricted to part-whole DAAs Czardybon (2010: 30ff, 2014: 309ff). What this
shows with respect to the language-specific cut-off points on the scale (19) is that
for Upper Sorbian the obligatory use of articles is two steps further advanced than
in Upper Silesian.
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4.4.2 The Strong Article Indicates Pragmatic Uniqueness: Split II
As mentioned in 4.3.2, numerous spoken varieties of German such as Alemannic,
Bavarian, and dialects of the Rhineland show this split. Notice that for all vari-
ants at issue the definite articles are at least prosodically distinct from the
demonstrative pronouns in that the latter are stressed and often lengthened.
First, let me return to Rhinelandic as mentioned in 4.3. Recall that the weak
article occurs with semantically unique concepts (INs or FNs). The strong article,
by contrast, occurs in contexts of deictic, anaphoric and autophoric reference,
hence pragmatic uniqueness (see also Schroeder 2006: 560f and references there).
This can be nicely illustrated by an example from Rheydter Platt, a variety of
the lower Rhine:16

(31) Rheydter Platt (< Low Franconian < West Germanic)
in
into

dä
def.m.str

Pott
pot

jeschutt,
poured

dat
3sg

mit
with

die
def.f.str

Karr
cart

narem
to def.dat.wk

Veld
field

jefahre
driven

‘(was) poured into the pot and carried to the field with the cart’

The noun phrase dä Pott ‘the pot’ is coreferent with the previously introduced e
Vaat ’a barrel’, and die Karr with enne Warel ‘a cart’, respectively.

Another instance of a Split II is the opposition in Swiss German. It was
shown above that weak forms are found with INs and FNs. The full forms in
(32) signal anaphoric and autophoric use, that is, pragmatic uniqueness.

(32) Swiss German (Alemannic < West Germanic; Studler 2014: 156)
a. Uf

on
em
def.dat.wk

Tesch
table

liit
lie.3sg

es
indef.n

Buech.
book

Das
def.n.str

Buech
book

wot
want

i
I

lääse.
read

‘There is a book on the table. I want to read the book.’
b. Das

def.n.str
Buech,
book

wo-n-i
rel-ep-1sg

geschter
yesterday

gchouft
buy.part

ha
have

‘the book that I bought yesterday’

The opposition in the article forms in Alemannic, then, renders the conceptual
difference of semantic and pragmatic uniqueness, where the latter requires a
strong article. Like in Ripuarian and elsewhere, the strong forms indicate an
operation that turns [− unique] to [+ unique].

Particularly revealing in this connection is an observation with respect to the
distribution of definite articles in Fering, a variety of Northern Frisian spoken on
the islands of Föhr and Amrum. Basically, the so-called D-forms di, det, don are

16 The example (31) is an excerpt from spontaneous conversation among two elderly
dialect speakers, recorded and transcribed by Jennifer Kohls. I would like to thank
her for permitting me to quote her data.
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unstressed variants of the demonstrative pronoun, and confined to pragmatic
uniqueness, hence indicate the operation SN → IC. The so-called A-forms a,
at cover the contexts of semantic uniqueness; see Ebert 1971 and 1985. The
additional observation by Keenan & Ebert (1973) concerns the contrast found
in autophoric context in the scope of matrix verbs that give rise to referential
ambiguities. Consider the following example pair:

(33) Fering (Northern Frisian < West Germanic; Keenan & Ebert 1973: 422f)
John wonnert ham, dat a / di maan wat woon
John wonder 3sg.acc.m comp def.wk / def.str man rel won
bisööpen wiar.
drunk was
‘John was surprised that the man who won was drunk.’

Crucially, the A-form in (33) is tied to a de dicto reading, that is, an opaque
reading with the concept of ‘winner’ as such. The de re reading, that is, the
transparent interpretation involving the extensional meaning of winner, is not
available; it would instead require the D-form, which is ambiguous between both
readings. This piece of data strongly confirms the thesis that split article systems
serve to mark the functional distinction of semantic and pragmatic uniqueness.
The weak article indicates that the uniqueness comes about independently of
the situation and does not require any shift induced by the context, as it would
be needed in order to determine who the winner is.

Keenan & Ebert (1973: 423f) furthermore argue that the de dicto vs. de re
contrast also accounts for the distribution of articles in Malagasy.

(34) Malagasy (Austronesian; Keenan & Ebert 1973: 423f)
Gaga Rakoto fa mamo ny / ilay mpandresy.
surprised Rakoto comp drunk def.wk / def.str winner
‘Rakoto was surprised that the winner was drunk.’

Of the two forms at issue, ny and ilay, the former is the general definite article
that occurs in contexts of semantic as well as pragmatic uniqueness. Accordingly,
it allows for both the opaque and the transparent reading in contexts analogous
to (34). This is in contrast with the form ilay, “whose use is narrowly restricted
to objects that the hearer has specifically identified prior to the utterance” (l.c.:
423). In other words, ilay covers a certain section of pragmatic uniqueness, hence
it only allows for the de re reading. Note that this does not imply that every
article split language will exhibit a de dicto vs. de re contrast comparable to
those of Fering and Malagasy; for example, German does not, as an anonymous
reviewer points out. Rather, as with the other asymmetries analysed in this
section, the implication is that if there is such a contrast, the distribution will
always be along these lines, and cannot be the reverse.

In sum, the generalisation for the various instances of Split II can be repre-
sented along the following lines: weak articles merely redundantly display uni-
que reference. Being otherwise vacuous, they denote an identity mapping of the
type 〈e, e〉. Strong articles indicate that uniqueness comes about by reference to
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the context or discourse. They denote a semantic operation from [− unique] to [+
unique], thus, SN → IC.

5 Conclusion

I have argued in this paper that the distinction between semantic and pragmatic
uniqueness and possession is successful in explaining morphosyntactic splits
regarding two essential categories of nominal determination, namely uniqueness
and possession. The goal was to provide evidence for the adequacy of concep-
tual noun types and of shifts among them. The results also show that type shift
operations are not merely a construct in order to remedy the composition as
conceived by the theoretician. Rather, in many languages there are morpho-
logical markers that do overtly what has been thought to be the job of covert
operations, and in fact is the job of type shifts in other languages. They should
therefore be regarded as fundamental ingredients of the human language capac-
ity, substantiated by the overt lexical inventory of natural languages.

Let me sum up the major theses I have advocated above:

1. As for definiteness, semantic uniqueness implies that the reference of a noun
is unique because of its lexical semantics. Pragmatic uniqueness characterises
those uses of a noun in which a unique determination of its referent only
comes about by the discourse or utterance context. Anaphoric or deictic ref-
erence, hence pragmatic uniqueness, implies a type shift 〈〈e, t〉, e〉 from sortal
to individual (SN → IC).

2. This distinction is reflected by two different sorts of splits: Split I: Pragmatic
uniqueness is marked by the definite article, whereas semantic uniqueness is
unmarked (e.g., in West Slavic). Split II: Pragmatic and semantic unique-
ness is morphosyntactically separated by different article forms (e.g., in West
Germanic and Catalan).

3. ‘Weak’ articles are semantically redundant, merely signalling the presence of
an IN or FN. ‘Strong’ articles, as well as the articles of Split I languages,
denote a function SN → IC (〈〈et〉, e〉). This holds, among others, for dä, die,
dat (as opposed to d(e)r, de, et) as they are found in various versions in most
spoken varieties of German.

4. Indefinite uses of underlying [+ unique] nouns (e.g., a sun) implicate a shift in
the opposite direction (IN → SC, FN → RC), thus, 〈e, 〈e, t〉〉 and 〈〈e, e〉, 〈e, 〈e,
t〉〉〉, respectively.

5. As for possession, semantic possession implies that the relation between pos-
sessum and possessor is inherent to the lexical semantics of the possessum
noun. Pragmatic possession implies that the POSS relation is contextually
established.

6. The distinction of semantic vs. pragmatic possession largely accounts for what
is known as alienability contrast. In many languages sortal nouns must be
endowed with a connective or classifier when combined with a possessor.
Thus, ‘alienable’ morphology overtly denotes a function taking [− relational]
to [+ relational], thus, 〈〈e, t〉, 〈e, 〈e, t〉〉〉.
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7. Conversely, ‘inalienable’ morphology merely signals the inherence of a rela-
tion of affiliation. Thus, for relative nouns the possessed use is canonical and
unmarked, while the omission of a possessor in some languages requires a de-
relativizing marker, thus, an overt exponent of an 〈〈e, 〈e, t〉〉, 〈e, t〉〉 operation
converting [+ relational] to [− relational].

8. The two categories of nominal determination, definiteness and possession,
have been shown to be parallel in the following regards: 1.) the distinction
of semantic vs. pragmatic determination; 2.) the type shifts and overt opera-
tions from underlying concept type to actual use; 3.) the close correlation of
semantic and morphosyntactic markedness.
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Hualde, J.: Ignacio: Catalan. Routledge, London (1992)
Keenan, E.L., Ebert, K.H.: A note on marking transparency and opacity. Lin-

guist. Inquiry 4, 412–424 (1973)
Lehmann, C.: Possession in Yucatec Maya. Lincom Europa, Munich (1998)
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Abstract. Visser’s basic propositional logic BPL is the subintuition-
istic logic determined by the class of all transitive Kripke frames, and
his formal provability logic FPL, an extension of BPL, is determined
by the class of all irreflexive and transitive finite Kripke frames. While
Visser showed that FPL is embeddable into the modal logic GL, we
first show that BPL is embeddable into the modal logic wK4, which
is determined by the class of all weakly transitive Kripke frames, and
we also show that BPL is characterized by the same frame class. Sec-
ond, we introduce the proper successor semantics under which we prove
that BPL is characterized by the class of weakly transitive frames, tran-
sitive frames, pre-ordered frames, and partially ordered frames. Third,
we introduce topological semantics by interpreting implication in terms
of the co-derived set operator and prove that BPL is characterized by
the class of all topological spaces, T0-spaces and Td-spaces. Finally, we
establish the topological completeness of FPL with respect to the class
of scattered spaces.

1 Introduction

Visser [18] introduced a natural deduction for the logic called basic propositional
logic (BPL), and the formal provability logic FPL for interpreting formal prov-
ability in Peano Arithmetic is obtained from BPL by adding Löb’s rule. Visser
proved that BPL is characterized by the class of all transitive Kripke frames,
and FPL by the class of all finite irreflexive transitive frames. Intuitionistic
logic (Int) is also shown by Visser [18] to be an extension of BPL which is
incomparable with FPL. These propositional logics are related with modal log-
ics by Gödel-Mckinsey-Tarski style translations. It is well-known that the Gödel-
Mckinsey-Tarski translation [10,13] faithfully embeds Int into the modal logic
S4. Visser [18, p.179] considered two variants, G0 and G1 (in our terminology),
of Gödel-Mckinsey-Tarski translation and showed that both of them faithfully
embed FPL into modal provability (Gödel-Löb) logic GL. The translation G0

from the language for BPL to modal logic is defined recursively as follows:
c© Springer-Verlag Berlin Heidelberg 2015
M. Aher et al. (Eds.): TbiLLC 2013, LNCS 8984, pp. 257–275, 2015.
DOI: 10.1007/978-3-662-46906-4 15
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G0(p) = �p G0(ϕ ∨ ψ) = G0(ϕ) ∨ G0(ψ)
G0(⊥) = ⊥ G0(ϕ ∧ ψ) = G0(ϕ) ∧ G0(ψ)

G0(ϕ → ψ) = �(G0(ϕ) → G0(ψ)).

The difference between G0 and G1 is in the atomic clause: while G0 sends a
variable p to �p, G1 sends p to p∧�p. It is already known that G0 embeds BPL
into modal logic K4. For example, in [17], a Gödel-Mckinsey-Tarski translation
is studied in an extension of BPL with a new implication symbol. As far as
we know, no one has investigated which modal logics we can embed BPL into
via the translation G1. In this paper, we give an answer to this question in
a generalized form (Theorem 1): G1 embeds BPL into wK4, where wK4 was
shown by Esakia [8] to be the modal logic of weakly transitive Kripke frames.

Another observation about G1 is the following: the modal formula p ∧ �p is
logically equivalent to �p over reflexive Kripke frames, but they are not logically
equivalent over non-reflexive Kripke frames. Thus, if we use a sort of proper
successor semantics, i.e., the semantics that interpreting implication with proper
successors even in reflexive transitive frames, we can characterize the logic BPL.
In the proper successor semantics, the current evaluation point is disregarded,
and so reflexivity of pre-ordered or partially ordered frames is also disregarded.
Thus we can give various Kripke-type semantics for BPL (Theorem 2).

The third observation about the embedding of BPL into wK4 is that we can
provide a topological semantics for BPL, since wK4 is the logic of all topologi-
cal spaces if the diamond ♦ is interpreted as the derivative operator or the limit
operator [3,9]. In finding the corresponding notion to proper successor semantics
for the topological setting, we naturally introduce the co-derivative operator,
i.e., the dual of the derivative operator, and use this to interpret implication.
With the help of the result of translation, we also establish several new topo-
logical completeness results of BPL (Theorem 3). Although modal logics of all
the topological spaces, all T0-spaces and all Td-spaces are distinct from each
other [3,8], we show that the propositional logics (in the language of BPL) of
all topological spaces, all T0-spaces and all Td-spaces are all the same as BPL,
provided we interpret the implication symbol in terms of the co-derivative oper-
ator. Finally, under the same topological interpretation of implication, we also
show that Visser’s formal provability logic FPL is characterized by the class of
all scattered spaces (Theorem 4), as a corollary of the embedding of FPL into
GL and the topological completeness of GL with respect to the same class of
spaces.

2 Visser’s Basic Propositional Logic

The language L of BPL is the same as the language of intuitionistic proposi-
tional logic, consisting of a countable set Prop of propositional variables, and
propositional connectives ⊥,∧,∨,→. The set FormL of all L-formulas is defined
by the following inductive rule:

ϕ :: = ⊥ | p |ϕ ∧ ψ |ϕ ∨ ψ |ϕ → ψ (p ∈ Prop).
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We will now introduce Kripke semantics for Visser’s BPL. A Kripke frame
is a pair F = (W,R) where W is a nonempty set and R ⊆ W × W is a binary
relation. A Kripke model M is a pair of a Kripke frame F = (W,R) and a
valuation mapping V : Prop → P(W ). A Kripke frame F = (W,R) (or a model
M) is said to be

(i) transitive, if wRv and vRu imply wRu for all w, v, u ∈ W .
(ii) weakly-transitive, if wRv and vRu and w �= u imply wRu for all w, v, u ∈ W .
(iii) pre-ordered, if it is transitive and reflexive, i.e., wRw for all w ∈ W .
(iv) partially ordered, if it is pre-ordered and anti-symmetric, i.e., wRv and vRw

jointly imply w = v for all w, v ∈ W .

The reader can find the names for several classes of Kripke frames in the following
table:

WT the class of all weakly-transitive Kripke frames

TR the class of all transitive Kripke frames

ITRfin the class of all finite irreflexive and transitive frames

PRE the class of all pre-ordered frames

PO the class of all partially ordered frames

Definition 1. Given a Kripke frame F = (W,R), we say that a valuation V :
Prop → P(W ) in F is persistent, if w ∈ V (p) and wRu imply u ∈ V (p) for
all w, u ∈ W and p ∈ Prop. We say that a Kripke model M = (W,R, V ) is
persistent, if the valuation V is persistent.

Given any persistent Kripke model M = (W,R, V ), the satisfaction relation
M, w |= ϕ (note that we use ‘|=’ here, this is different from ‘�’ for our modal
syntax below) is defined as follows:

M, w |= p iff w ∈ V (p),
M, w |= ⊥ Never,
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ,
M, w |= ϕ → ψ iff (wRu and M, u |= ϕ) imply M, u |= ψ, for all u ∈ W.

We do not require any condition on R here. It is known that transitivity of R and
the persistency condition for all propositional variables imply the persistency for
all formulas. We can also weaken the transitivity condition on R as follows:

Proposition 1. Let M = (W,R, V ) be a persistent and weakly-transitive model.
For all w, u ∈ W and all ϕ ∈ FormL, if M, w |= ϕ and wRu, then M, u |= ϕ.
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Proof. By induction on ϕ. We show only the case ϕ ≡ ψ → χ. Assume that
wRu and M, w |= ψ → χ. We need to show M, u |= ψ → χ. Suppose that
uRv and M, v |= ψ. It suffices to show M, v |= χ. We divide our argument into
two cases: (1) w �= v and (2) w = v. For case (1), by the weak-transitivity of
R, we obtain wRv. Since M, w |= ψ → χ and M, v |= ψ, we get M, v |= χ.
For case (2), since M, v |= ψ, we get M, w |= ψ. By the inductive hypothesis
�ρ�• ⊆ tτ (�ρ�•) and monotonicity of tτ , tτ (�ρ�•) ⊆ tτ (tτ (�ρ�•)). Therefore, we
obtain w ∈ tτ (tτ (�ρ�•)).

Given a class F of Kripke frames, we say that ϕ ∈ FormL is valid in F (notation:
F |= ϕ) if (F, V ), w |= ϕ for all F ∈ F, all persistent valuations V in F and all
w ∈ W . Define the propositional logic of F by:

Log(F) := { ϕ ∈ FormL : F |= ϕ } .

It is well-known that Log(PO) = Log(PRE) is the same as the set of all theorems of
intuitionistic logic Int. Since PRE ⊆ TR, we have Log(TR) ⊆ Log(PRE) = Int.
The following fact demonstrates that Log(TR) �= Int.

Fact 1. Both (p ∧ (p → q)) → q and (p → (p → q)) → (p → q) are theorems of
Int but they are not in Log(TR).

Proof. For the first, it suffices to take the following Kripke model (W,R, V )
where W = { 0, 1 }, R = { (0, 1) } and V (p) = { 0, 1 }, V (q) = { 1 }. Then, the
given formula is false at 0. For the second, we change the valuation into V ′ such
that V ′(p) = { 1 } and V ′(q) = ∅. The formula is false at 0. 
�
Remark 1. We can define the local consequence relation as follows: Given a set
Γ ∪{ϕ }, ϕ is a semantic consequence from Γ (notation: Γ |= ϕ), if for all transi-
tive and persistent Kripke models M = (W,R, V ) and all w ∈ W , M, w |= γ for
all γ ∈ Γ implies M, w |= ϕ. One can easily verify that {ϕ1, . . . , ϕn−1, ϕn } |= ψ
implies {ϕ1, . . . , ϕn−1 } |= ϕn → ψ. However, the converse does not hold in
general. For example, { p → q } |= p → q but { p → q, p } �|= q. The reflexiv-
ity condition on R is sufficient for the converse direction. Moreover, we observe
from [15] that {ϕ1, . . . , ϕn−1, ϕn } |= ψ iff

∧
1≤i≤n ϕi |= ψ.

We will now move to the axiomatization of BPL. Visser introduced the natural
deduction for BPL. Here we present Suzuki and Ono’s Hilbert-style axiomati-
zation of BPL [16]. Their axiomatization is an extension of Corsi [6]’s axioma-
tization of the logic F of strict implication.

Fact 2 ([16]). BPL is completely axiomatized by the following axioms and
inference rules:

(A1) p → p (A7) p → (q → p ∧ q)
(A2) p → (q → p) (A8) p → p ∨ q
(A3) (p → q) ∧ (q → r) → (p → r) (A9) q → p ∨ q
(A4) p ∧ q → p (A10) (p → r) ∧ (q → r) → (p ∨ q → r)
(A5) p ∧ q → q (A11) p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r)

(A6) (p → q) ∧ (p → r) → (p → q ∧ r) (A12) ⊥ → p
(MP) Fromϕ andϕ → ψ, inferψ
(Sub) Fromϕ, infer any uniform substitution instance ofϕ.
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Fact 3 ([16,18]). BPL = Log(TR).

It is known from [12] and [6] that Int is an extension of BPL, obtained by
adding the axiom (p ∧ (p → q)) → q (recall Fact 1). It is also easy to show from
[18] that Visser’s logic FPL is also an extension of BPL, obtained by adding
the Löb axiom (( → p) → p) → ( → p). Moreover, FPL is characterized by
the class ITRfin of all finite irreflexive transitive Kripke frames [18].

Fact 4 ([18]). FPL = Log(ITRfin).

In order to capture these logics uniformly, we will introduce the concept of
superbasic logics.

Definition 2. A set Γ ⊆ FormL is a superbasic logic if Γ contains all the axioms
of Fact 2 and closed under modus ponens (MP) and uniform substitution (Sub).
Given a set Σ ⊆ FormL, we use BPL⊕ Σ to mean the smallest superbasic logic
containing Σ.

We note that both FPL and Int are superbasic logics. However, since the formula
(( → p) → p) → ( → p) is not a tautology, it is not a theorem of Int. This
implies that Int and FPL are incomparable.

For any classes of frames F and G, notice that F ⊆ G implies Log(G) ⊆
Log(F). Since TR ⊆ WT clearly holds, we obtain Log(WT) ⊆ Log(TR). Fact 3
enables us to derive the following Proposition 2 immediately.

Proposition 2. Log(WT) ⊆ BPL.

The converse direction of this proposition also holds.

Proposition 3. BPL ⊆ Log(WT).

Proof. The axioms of BPL, except (A2) and (A7), are valid on all (possibly
non-weakly transitive and non-persistent) Kripke models. The axioms (A2) and
(A7) are valid on WT by Proposition 1. It is easy to show that (Sub) preserves
the validity on WT. We will focus on (MP) here. Suppose that WT |= ϕ and
WT |= ϕ → ψ. Our goal is to show WT |= ψ. Fix any persistent Kripke model M
= (W,R, V ) such that (W,R) ∈ WT, and any state w ∈ W . We show M, w |= ψ.
Take a state ∗ /∈ W . We construct the Kripke model M∗ = (W ∗, R∗, V ∗) by
putting W ∗ = W ∪ { ∗ }, R∗ = R ∪ { (∗, x) : x ∈ W } and V ∗(p) = V (p) for all
p ∈ Prop. That is, we add a new point to M as a root. It is trivial to see that
R∗ is weakly transitive and V ∗ is persistent. It is easy to show by induction on
the construction of formulas that M, x |= χ iff M∗, x |= χ for all x ∈ W and all
χ ∈ FormL. Since WT |= ϕ and WT |= ϕ → ψ, we obtain M∗, ∗ |= ϕ → ψ and
M∗, w |= ϕ. By construction of M∗, we have M∗, w |= ψ. Hence M, w |= ψ. 
�
Remark 2. While the inference rule (MP) does not preserve truth on a fixed
persistent Kripke model, it preserves validity on the class of persistent Kripke
models or frames.

By Propositions 2 and 3, we obtain the following, i.e., BPL is sound and (weakly)
complete with respect to WT.

Corollary 1. BPL = Log(WT).
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3 Embedding of Extensions of BPL into Modal Logics

In this section, we prove that BPL is embeddable into the modal logic wK4 of
the class WT of all weakly transitive frames. We introduce some basic notions
of modal logic first. The syntax ML of modal logic consists of a set Prop of
propositional variables, ∧, ∨, ⊥, → and a modal operator �. The set FormML
of all ML-formulas is generated by the following grammar:

α : : = ⊥ | p | α ∧ β | α ∨ β | α → β | �α (p ∈ Prop).

Given any Kripke model M and a state w, the notion of truth or satisfaction
M, w � α is defined as usual [4]. Given a class F of frames, we say that a modal
formula α is valid in F (notation: F � α) if (F, V ), w � α for all F ∈ F, all
valuations V in F and all w ∈ W . Define

MLog(F) := { α ∈ FormML : F � α } .

We say that a set Λ ⊆ FormML of modal formulas is a normal modal logic, if it
contains all instances of propositional tautologies, the axiom (K) �(p → q) →
(� p → � q), and is closed under modus ponens (MP), uniform substitution
(US), and �-necessitation (from ϕ infer �ϕ). It is well-known that the modal
operator � is monotone in any normal modal logic Λ: if α → β ∈ Λ, then
�α → �β ∈ Λ. Let K be the minimal normal modal logic. Given a set Σ
of modal formulas, we use K ⊕ Σ to mean the smallest normal modal logic
containing Σ.

Let NExt(wK4) be the class of all normal modal logics that contain the
modal axiom (w4) p∧�p → ��p, which defines weak-transitivity of R. In what
follows, we use the following standard names for normal modal logics.

– wK4 := K ⊕ p ∧ �p → ��p.
– K4 := K ⊕ �p → ��p.
– S4 := K ⊕ {�p → ��p,�p → p }.
– GL := K ⊕ �(�p → p) → �p.

It is well-known that K4 = MLog(TR). Moreover, Esakia [8] proved the following
result.

Fact 5 ([8]). wK4 = MLog(WT).

It is easy to see that the modal logic wK4 is a proper sublogic of K4. However,
if we add the modal axiom (T ) �p → p for reflexivity to both logics, we get the
same modal logic S4.

In the introduction of this paper, we mentioned Visser’s embedding of BPL
into K4 by G0, and FPL into GL by G1. Inspired by Easkia’s result on wK4,
we will prove that Visser’s translation G1 faithfully embeds BPL into wK4.
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Definition 3. The translation G1 : FormL → FormML is defined recursively as
follows:

G1(p) = p ∧ �p G1(ϕ ∨ ψ) = G1(ϕ) ∨ G1(ψ)
G1(⊥) = ⊥ G1(ϕ ∧ ψ) = G1(ϕ) ∧ G1(ψ)

G1(ϕ → ψ) = �(G1(ϕ) → G1(ψ)).

Proposition 4. For any normal modal logic Λ ∈ NExt(wK4), and any for-
mula ϕ ∈ FormL, �Λ G1(ϕ) → �G1(ϕ).

Proof. By induction on ϕ. We show only the atomic case and the case for impli-
cation. Other cases are easily shown by the inductive hypothesis. For ϕ ≡ p, we
have G1(p) = p ∧ �p. By (w4) ∈ Λ, we have p ∧ �p → �p ∧ ��p ∈ Λ. Since
�p∧��p ↔ �(p∧�p) ∈ Λ, we have p∧�p → �(p∧�p) ∈ Λ. For ϕ ≡ ψ → χ, we
want to show �(G1(ψ) → G1(χ)) → ��(G1(ψ) → G1(χ)) ∈ Λ. Let α := G1(ψ)
and β := G1(χ). By the inductive hypothesis, we have α → �α ∈ Λ and
β → �β ∈ Λ. It suffices to show the following:

(1) ¬α → (�(α → β) → ��(α → β)) ∈ Λ; and
(2) α → (�(α → β) → ��(α → β)) ∈ Λ.

For (1), since ¬α ∧ �(α → β) → ¬α ∧ (α → β) ∧ �(α → β) ∈ Λ, by the
axiom (w4), we obtain ¬α → (�(α → β) → ��(α → β)) ∈ Λ. For (2), since
�α ∧ �(α → β) → �β ∈ wK4, by the inductive hypothesis β → �β ∈ Λ,
we have �α ∧ �(α → β) → ��β ∈ Λ. As β → (α → β) is a tautology, and by the
monotonicity of �, we get �α ∧ �(α → β) → ��(α → β) ∈ Λ. Finally, by the
inductive hypothesis α → �α ∈ Λ, we get α ∧ �(α → β) → ��(α → β) ∈ Λ. 
�
Now we consider the following inference rule and provide a sufficient condition
for that BPL is embeddable into a normal modal logic Λ:

(MP�) from p and �(p → q) infer q.

We say that (MP�) is admissible in a normal modal logic Λ if, for any uniform
substitution σ in FormML, pσ ∈ Λ and �(pσ → qσ) ∈ Λ imply qσ ∈ Λ. Note that
the addition of the admissible rule to Λ does not change the set of all theorems
in Λ. We need this admissibility because of (MP) in BPL (recall Remark 2).

Lemma 1. Let Σ ⊆ FormL and Λ a normal modal logic such that (MP�) is
admissible in Λ and G1[Σ] ∪ { (w4) } ⊆ Λ. Then, for all ϕ ∈ FormL,

�BPL⊕Σ ϕ implies �Λ G1(ϕ).

Proof. Assume �BPL⊕Σ ϕ. We show �Λ G1(ϕ) by induction on the derivation
of ϕ in BPL ⊕ Σ, where we treat elements of Σ as new axioms. It suffices to
show that the translation G1 converts all axioms in BPL into theorems in Λ,
and that inferences rules (MP) and (Sub) are preserved under G1. We check only
the axiom (A2) p → (q → p) and (MP). Other axioms and rules can be checked
similarly.
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For (A2), we need to show �(G1(p) → �(G1(q) → G1(p)) ∈ Λ. By Propo-
sition 4 (we need the axiom (w4) here), G1(p) → � G1(p) ∈ Λ, which implies
G1(p) → �(G1(q) → G1(p)) ∈ Λ. By �-necessitation, we obtain our goal.

For (MP), assume that χ is obtain from ψ and ψ → χ in BPL ⊕ Σ. By
the inductive hypothesis, we have G1(ψ) ∈ Λ and G1(ψ → χ) ∈ Λ. By Propo-
sition 4, �(G1(ψ) → G1(χ)) ∈ Λ. Since (MP�) is admissible in Λ, we obtain
G1(ψ) ∈ Λ. 
�
Lemma 2. Let Σ ⊆ FormL, Λ a normal modal logic and F be a class of frames
such that Λ ⊆ MLog(F) and Log(F) ⊆ BPL ⊕ Σ. Then, for all ϕ ∈ FormL,

�Λ G1(ϕ) implies �BPL⊕Σ ϕ.

Proof. Assume ϕ �∈ BPL ⊕ Σ. By the assumption Log(F) ⊆ BPL ⊕ Σ, there
exists a frame F ∈ F such that F � ϕ. Let M be a model based on F with a
persistent valuation and w a state in M such that M, w � ϕ. By assumption
Λ ⊆ MLog(F), it suffices to show M, w � G1(ϕ). By induction on ψ ∈ FormL,
we show that, for all x in M,

M, x |= ψ iff M, x � G1(ψ),

Then we conclude from M, w �|= ϕ that M, w � G1(ϕ). Our inductive proof
proceed as follows: The atomic case is done by persistency. We show only the
case of implication. Let ψ = ξ → χ. By definition of M, x |= ξ → χ, we obtain
M, y |= ξ implies M, y |= χ for all y in M such that xRy. By the inductive
hypothesis, this is equivalent to: M, y � G(ξ) implies M, y � G(χ) for all y in
M such that xRy, hence M, x � �(G1(ξ) → G1(χ)). 
�
By Lemmas 1 and 2, we conclude the following theorem.

Theorem 1. Let Σ ⊆ FormL and Λ a normal modal logic such that (MP�) is
admissible in Λ and G1[Σ] ∪ { (w4) } ⊆ Λ. Let F be a class of frames such
that Λ ⊆ MLog(F) and Log(F) ⊆ BPL⊕Σ. Then, BPL⊕Σ is embeddable into
Λ via G1, i.e., for all ϕ ∈ FormL,

�BPL⊕Σ ϕ iff �Λ G1(ϕ).

Proposition 5. The rule (MP�) is admissible in Λ ∈ {wK4,K4,S4,GL }.
Proof. Let Λ ∈ {wK4,K4,S4,GL }. Suppose that α,�(α → β) ∈ Λ. Recall
that Λ = MLog(F), where (Λ, F) = (wK4, WT), (K4, TR), (S4, PRE), or
(GL, ITRfin). In order to show β ∈ Λ, it suffices to show that β is valid on
all frames F ∈ F by Λ = MLog(F). Take any Λ-frame F = (W,R), and any
valuation V in F and any w ∈ W . Let M = (F, V ). It suffices to show M, w � β.
By the same construction as in the proof of Proposition 3, we construct M∗,
i.e., we add a new state ∗ down to F and get a new Λ-frame and a model M∗ in
which the valuation of propositional variables is the same as that in M. Then
it is easy to check that (M∗, x) and (M, x) satisfy the same modal formulas for
all x ∈ W . By assumption, we obtain M∗, ∗ � �(α → β) and M∗, w � α (note
that the frame part of M∗ is still in F for our choice of Λ). By the construction
of M∗, we have M∗, w � β. Hence M, w � β. 
�
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Corollary 2. For all ϕ ∈ FormL, �BPL ϕ iff �wK4 G1(ϕ).

Proof. By Fact 3, Propositions 2, 5 and Theorem 1. 
�
Corollary 3. For all ϕ ∈ FormL, �BPL ϕ iff �K4 G1(ϕ).

Proof. By K4 = MLog(TR), Fact 3, Proposition 5 and Theorem 1. 
�
Corollary 4. For all ϕ ∈ FormL, �Int ϕ iff �S4 G1(ϕ).

Proof. By S4 = MLog(PRE), Int = Log(PRE), Proposition 5, Theorem 1. 
�
Corollary 5. For all ϕ ∈ FormL, �FPL ϕ iff �GL G1(ϕ).

Proof. By GL = MLog(ITRfin), Fact 4 (i.e., FPL = Log(ITRfin)),Proposition 5
and Theorem 1. Notice also that G1((( → p) → p) → ( → p)) is equivalent
with �(�(�G1(p) → G1(p)) → �G1(p)), which is provable in GL. 
�

4 Alternative Kripke Semantics for Visser’s BPL

Recall that PRE is the class of all pre-ordered frames and PO is the class of all
partially ordered frames. We already know thatBPL = Log(TR) � Log(PRE) =
Log(PO) = Int. Moreover, we have shown BPL = Log(WT) in Corollary 1.
Visser’s motivation in [18] for obtaining BPL is to drop the requirement of
reflexivity in Kripke frames for intuitionistic logic. Here we present an alterna-
tive way for obtaining BPL where we can keep the requirement of reflexivity in
Kripke frames.

Given a persistent Kripke model M = (W,R, V ) and ϕ ∈ FormL, we define
the alternative satisfaction relation M, w |=• ϕ by replacing the truth clause of
ϕ → ψ with the following clause:

M, w |=• ϕ → ψ iff wRu & w �= u & M, u |=• ϕ implyM, u |=• ψ.

The underlying idea of this new clause is to disregard the current evaluation point
w by adding the condition of ‘w �= u’. In other words, we restrict our attention to
the proper future or successor points. We will call the new semantics the proper-
successor semantics. It allows us to characterize Visser’s BPL in various ways.
First, we obtain the following persistency result by induction on the construction
of formulas.

Proposition 6. Let M = (W,R, V ) be persistent and weakly-transitive. For all
w, u ∈ W and ϕ ∈ FormL, if M, w |=• ϕ and wRu, then M, u |=• ϕ,

By F |=• ϕ we mean that (F, V ), w |=• ϕ for all F ∈ F, all persistent valuations
V and all points w in F. Given any class of frames F, define

Log•(F) = { ϕ ∈ FormL : F |=• ϕ } .

Thus we get the following lemma immediately by the fact that PO ⊆ PRE ⊆
TR ⊆ WT.
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Lemma 3. Log•(WT) ⊆ Log•(TR) ⊆ Log•(PRE) ⊆ Log•(PO).

In what remains of this section, we will show that all the logics in Lemma3 are
equal to BPL. First, by induction on the proof in BPL and Proposition 6, we
can easily establish the soundness of BPL with respect to the class of frames
WT under the proper successor semantics.

Lemma 4. BPL ⊆ Log•(WT).

In order to show completeness, Lemmas 3 and 4 tell us that it suffices to show
Log•(PO) ⊆ BPL. Our proof is divided into to two parts: Log•(PO) ⊆ Log•(TR)
(cf. Lemma 6) and Log•(TR) ⊆ Log(TR) = BPL (cf. Lemma 5). First, we
concentrate on the latter part. Our tool for proving it is the notion of duplication
of a weakly transitive Kripke model, defined as follows:

Definition 4. Let M = (W,R, V ) be a persistent Kripke model. Define the
duplication of M as the model M′ = (W ′, R′, V ′) where

(i) W ′ = (W − C) � (C × {0, 1}), where C = {w ∈ W : wRw} and � means the
disjoint union;

(ii) Define a surjective function f : W ′ → W by

f(x) =

{
c, if x = (c, i) for some (c, i) ∈ C × {0, 1}.

x, otherwise.

Define R′ ⊆ W ′ × W ′ as follows: for all x, y ∈ W ′,

xR′y iff f(x)Rf(y).

(iii) V ′(p) = f−1[V (p)] for each propositional variable p.

In the duplication of a model, each reflexive point (possibly without proper
successors) is replaced by a proper cluster of two copies, e.g.

Thus, each reflexive point in M has a proper successor in the duplication M′.

Proposition 7. For any persistent model M = (W,R, V ), let M′ = (W ′, R′, V ′)
be its duplication. Then the following hold:

(1) V ′ is persistent.
(2) If R is transitive, then R′ is also transitive.
(3) M, f(x) |= ϕ iff M′, x |=• ϕ, for all x ∈ W ′ and ϕ ∈ FormL.
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Proof. For (1), assume x ∈ V ′(p) and xR′y. Then by definition of duplication, we
get f(x)Rf(y) and f(x) ∈ V (p). Since M is persistent, we have f(y) ∈ V (p), and
so y ∈ V ′(p). For (2), assume that R is transitive. Suppose that xR′y and yR′z.
By the definition of R′, we have f(x)Rf(y) and f(y)Rf(z). By the transitivity
of R, we have f(x)Rf(z). Hence xR′z.

We show (3) by induction on ϕ. We check only the case of implication. Other
cases are shown easily by using inductive hypothesis. Let ϕ ≡ ψ → χ. Assume
M, f(x) |= ψ → χ. Consider any point y ∈ W ′ such that xR′y, x �= y and
M′, y |=• ψ. By the inductive hypothesis, M, f(y) |= ψ. By xR′y, we have
f(x)Rf(y). Then M, f(y) |= χ. By the inductive hypothesis, M′, y |=• χ.

Conversely, assume M′, x |=• ψ → χ. Let w be any state in W such that
f(x)Rw and M, w |= ψ. We divide our argument into the following two cases:

Case 1. f(x) = w. Then wRw and so there exists y ∈ W ′ such that f(y) = w
and x �= y. By the inductive hypothesis, M′, y |=• ψ. Since xR′y and x �= y, we
have M′, y |=• χ. By f(y) = w and inductive hypothesis, M, w |= χ.

Case 2. f(x) �= w. Since f is surjective, we find a y ∈ W ′ such that f(y) = w
and x �= y. It follows from f(x)Rw and M, w |= ψ that xR′y and M′, y |=• ψ by
the inductive hypothesis. By assumption, M′, y |=• χ. Hence by the inductive
hypothesis, we get M, f(y) |= χ. 
�
Lemma 5. Log•(TR) ⊆ Log(TR).

Proof. Assume ϕ �∈ Log(TR). Then there exists a F ∈ TR and a persistent
valuation V such that (F, V ), w � ϕ for some state w in F. Let M = (F, V ) and
M′ = (F′, V ′) be its duplication. Since f is surjective, there exists an x ∈ W ′

such that f(x) = w and M′, x �

• ϕ by Proposition 7. By F′ ∈ TR, we get
ϕ �∈ Log•(TR). 
�
In order to show Log•(PO) ⊆ BPL, we now show that Log•(PO) ⊆ Log•(TR)
by employing the tree-unravelling technique.

Lemma 6. Log•(PO) ⊆ Log•(TR).

Proof. Assume ϕ �∈ Log•(TR). Then there exists an F = (W,R) ∈ TR and
a persistent valuation V and a point w ∈ W such that (F, V ), w �|=• ϕ. Let
M = (F, V ). Define the following tree-unraveling

−→
M[w] = (

−→
W,

−→
R,

−→
V ) of M from

w as follows:

–
−→
W = {(w0, w1, . . . , wn) : w0 = w and wiRwi+1 and wi �= wi+1 for all i < n};

– (w0, w1, . . . , wn)
−→
R (w0, v1, . . . , vm) iff n ≤ m and wi = vi for all 0 < i ≤ n.

–
−→
V (p) = {(w0, w1, . . . , wn) : wn ∈ V (p)} for each propositional variable p.

It is easy to check that
−→
V is persistent and (

−→
W,

−→
R ) is a transitive and reflexive

tree and, thus, a partial order. It suffices to show the following by induction on
ψ ∈ FormL,

−→
M[w], (w0, w1, . . . , wn) |=• ψ iffM, wn |=• ψ.
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We check only the case for implication. Other cases are easy by the inductive
hypothesis. Let ψ ≡ ξ → χ. Assume that

−→
M[w], (w0, w1, . . . , wn) |=• ξ → χ.

Let wnRwn+1, wn �= wn+1 and M, wn+1 |=• ξ. By the inductive hypothesis, we
obtain

−→
M[w], (w0, . . . , wn, wn+1) |=• ξ. By (w0, . . . , wn) �= (w0, . . . , wn, wn+1),

we obtain
−→
M[w], (w0, . . . , wn, wn+1) |=• χ. By the inductive hypothesis, M,

wn+1 |=• χ. Conversely, assume that M, wn |=• ξ → χ. Suppose that (w0, w1, . . . ,

wn) �= (w0, w1, . . . , wn+m) (m > 0) and
−→
M[w], (w0, w1, . . . , wn+m) |=• ξ. We may

focus on the case wn �= wn+m (otherwise, we can use the argument by persis-
tency to obtain our goal). By the inductive hypothesis, we have M, wn+m |=• ξ

and so M, wn+m |=• χ, and hence
−→
M[w], (w0, w1, . . . , wn+m) |=• χ. 
�

Putting Fact 3 and Lemmas 3, 4, 5 and 6 together, we get the following main
theorem of this section:

Theorem 2. BPL = Log•(WT) = Log•(TR) = Log•(PRE) = Log•(PO).

5 Topological Semantics for Visser’s Propositional Logics

5.1 Topological Semantics for BPL

Since wK4 is the modal logic of all topological spaces, if the diamond ♦ is
interpreted as the derivative operator [9], it is quite natural to ask if we can
also provide a topological semantics for BPL. In this section, we give a positive
answer to this question. The key to finding a topological semantics for BPL lies
in the answer to the following question: what is the corresponding notion in the
topological setting to the proper-successor semantics over Kripke models? Our
answer will be given in terms of the co-derivative operator, i.e., the dual of the
derivative operator. First, we will introduce some basic concepts.

Definition 5. We say that (W, τ) is a topological space, if W is a non-empty
set and τ : W → PP(W ) satisfies the following conditions:

(i) for each w ∈ W , τ(w) is non-empty, upward-closed and closed under binary
intersections.

(ii) X ∈ τ(w) implies w ∈ X, for all X ⊆ W and w ∈ W .
(iii) �τ (X) ⊆ �τ (�τ (X)) for all X ⊆ W , where �τ (X) := { w ∈ W : X ∈ τ(w) },

i.e., the interior of X.

When a set X ⊆ W is a fixed point of the operation �τ , i.e., �τ (X) = X,
we say that X is an open set in (W, τ). Given a topological space (W, τ), a
valuation V : Prop → P(W ) is τ -persistent, if V (p) ⊆ �τ (V (p)). We say that
M = (W, τ, V ) is τ -persistent, if V is τ -persistent.

Notice that condition (ii) of the definition of a topological space can be refor-
mulated as: �τ (X) ⊆ X for all X ⊆ W . Then, it is easy to see that a valuation
V : Prop → P(W ) is τ -persistent iff V (p) = �τ (V (p)), i.e., V (p) is an open set
in (W, τ).



Alternative Semantics for Visser’s Propositional Logics 269

Definition 6. Let X,Y ⊆ W . X ⇒ Y := (W \ X) ∪ Y .

We will introduce two kinds of topological semantics for the propositional lan-
guage L: ordinary and proper-successor topological semantics. Let M = (W, τ, V )
be a τ -persistent model. Define the ordinary topological semantics |= for L sim-
ilarly to Kripke semantics except the following interpretation for implication:

M, w |= ϕ → ψ iff X ∩ �ϕ� ⊆ �ψ� for some X ∈ τ(w),

where �ϕ� := { w ∈ W : M, w |= ϕ }. As is well-known, we can reformulate this
semantic clause in terms of the interior operation as follows:

M, w |= ϕ → ψ iff w ∈ �τ ((W \ �ϕ�) ⊆ �ψ�)
iff w ∈ �τ (�ϕ� ⇒ �ψ�).

Theorems of Int coincide with the valid formulas on all topological spaces, in
this semantics.

For the proper-successor semantics |=• for L, the semantic clause for impli-
cation is:

M, w |=• ϕ → ψ iff (X \ {w }) ∩ �ϕ�• ⊆ �ψ�• for some X ∈ τ(w),

where �ϕ�• := { w ∈ W : M, w |=• ϕ }.

Definition 7. Given a topological space (W, τ), the closure operator ♦τ is
defined by:

♦τ (X) := W \ �τ (W \ X).

We define the derivative operator dτ by putting

dτ (X) := { w ∈ W : w ∈ ♦τ (X \ {w }) } .

The co-derivative operator tτ is the dual of the derivative operator and defined
by putting

tτ (X) = W \ dτ (W \ X).

By definition, we obtain the following equivalences:

w ∈ ♦τ (X) iff Y ∩ X �= ∅ for all Y ∈ τ(w),
w ∈ dτ (X) iff (Y \ {w }) ∩ X �= ∅ for allY ∈ τ(w),
w ∈ tτ (X) iff (Y \ {w }) ⊆ X for some Y ∈ τ(w).

Since (Y \ {w }) ⊆ X is equivalent to Y ⊆ X ∪ {w }, we get:

w ∈ tτ (X) iff X ∪ {w } ∈ τ(w).

The proper-successor semantics |=• for the implication is reformulated as:

M, w |=• ϕ → ψ iff w ∈ tτ ((W \ �ϕ�•) ∪ �ψ�•)
iff w ∈ tτ (�ϕ�• ⇒ �ψ�•).

The following proposition states well-known properties of the operator tτ (cf. [2,
pp. 246-7]).
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Proposition 8. Given a topological space (W, τ), �τX = X ∩ tτ (X) for all
X ⊆ W . Therefore, X is an open set in (W, τ) iff X ⊆ tτ (X). Moreover,
X ∩ tτ (X) ⊆ tτtτ (X) holds for all X ⊆ W .

Proposition 9. For any τ -persistent topological model M = (W, τ, V ), both
�ϕ� ⊆ �τ (�ϕ�) and �ϕ�• ⊆ �τ (�ϕ�•) hold for all ϕ ∈ FormL.

Proof. Fix any τ -persistent topological model M = (W, τ, V ). Here we check
only the latter statement, i.e., �ϕ�• ⊆ �τ (�ϕ�•) holds for all ϕ ∈ FormL. The
former is shown quite similarly. By Proposition 8, it suffices to show that �ϕ�• ⊆
tτ (�ϕ�•) holds for all ϕ ∈ FormL. We only check the case where ϕ is of the
form ψ → ρ. Other cases are quite easy. We need to show tτ (�ψ�• ⇒ �ρ�•) ⊆
tτ (tτ (�ψ�• ⇒ �ρ�•)). Assume that w ∈ tτ (�ψ�• ⇒ �ρ�•). We divide our argument
into two cases: (i) w /∈ �ψ�• and (ii) w ∈ �ψ�•. For case (i), first we see that
w ∈ �ψ�• ⇒ �ρ�•. By Proposition 8 and the assumption w ∈ tτ (�ψ�• ⇒ �ρ�•),
we have w ∈ tτ (tτ (�ψ�• ⇒ �ρ�•)). For case (ii), assume w ∈ �ψ�• ⊆ tτ (�ψ�•).
By w ∈ tτ (�ψ�• ⇒ �ρ�•), we obtain w ∈ tτ (�ρ�•). By the inductive hypothesis
�ρ�• ⊆ tτ (�ρ�•) and monotonicity of tτ , tτ (�ρ�•) ⊆ tτ (tτ (�ρ�•)). Therefore, we
obtain w ∈ tτ (tτ (�ρ�•)). 
�
Given a class S of topological spaces, we define the logic Log(S) of S with respect
to the ordinary semantics and the logic Log•(S) of S with respect to the proper-
successor semantics similarly to the case of Kripke semantics.

Let (W, τ) be a topological space. (W, τ) is T0 if, whenever x �= y, there is an
X ∈ τ(x) such that y /∈ X or there is a Y ∈ τ(y) such that x /∈ Y . (W, τ) is Td if
tτ (X) ⊆ tτ (tτ (X)) for all X ⊆ W . We denote the class of all topological spaces
by TOP. By T0SP and TdSP we mean the class of all T0-spaces and the class of
all Td-spaces, respectively. We immediately obtain the following lemma.

Lemma 7. Log•(TOP) ⊆ Log•(T0SP) ⊆ Log•(TdSP).

Proof. By the fact that TdSP ⊆ T0SP ⊆ TOP. 
�
Lemma 8. BPL ⊆ Log•(TOP).

Proof. By induction on the length of proof in BPL. We only show that the
axiom (A2) is valid and that the rule (MP) preserves validity in TOP under the
proper successor topological semantics. Other axioms and rules are shown easily.
For the validity of (A2), we need to use τ -persistency. Fix any topological model
M = (W, τ, V ). By τ -persistency, we have �p�• ⊆ tτ (�p�•). Since tτ (�p�•) ⊆
tτ (�q → p�•), we obtain �p�• ⊆ tτ (�q → p�•). Then, �p�• ⇒ tτ (�q → p�•) =
W . It follows that tτ (�p�• ⇒ tτ (�q → p�•)) = tτ (W ) = W . This means that
�p → (q → p)�• = W .

For (MP), assume that TOP |=• ϕ and TOP |=• ϕ → ψ. In order to show
TOP |=• ψ, take any topological model M = (W, τ, V ) with τ -persistent val-
uation V and state w ∈ W . We show M, w |=• ψ. Fix some ∗ /∈ W . Define
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M∗ = (W ∗, τ∗, V ∗) as follows: W ∗ := W ∪ { ∗ }; τ∗ : W ∗ → PP(W ∗) is
defined by:

τ∗(x) :=

{
{W ∗ }, if x = ∗.

{ Y ⊆ W ∗ : X ⊆ Y for some X ∈ τ(x) } , otherwise.

V ∗ : Prop → P(W ) is defined by putting V ∗(p) = V (p) for all p ∈ Prop. Note
that τ(x) ⊆ τ∗(x) for all x ∈ W . Now we need to show that (W ∗, τ∗) is a
topological space and V ∗ is τ∗-persistent. First, let us show the τ∗-persistency
of V ∗. Let x ∈ V ∗(p) = V (p). Then x �= ∗. Hence by τ -persistency of V (p), we
obtain V (p) ∈ τ(x) ⊆ τ∗(x). Hence V ∗(p) ∈ τ∗(x).

Second, let us show that (W ∗, τ∗) is a topological space. It is easy to see
that (W ∗, τ∗) satisfies conditions of (i) and (ii) of Definition 5. For clause (iii)
of Definition 5, let Z ⊆ W ∗. Assume x ∈ �τ∗(Z), i.e., Z ∈ τ∗(x). We need to
show �τ∗(Z) ∈ τ∗(x), i.e., x ∈ �τ∗(�τ∗(Z)). If x = ∗, then Z = W ∗. Hence
�τ∗(W ∗) ∈ τ∗(x) by �τ∗(W ∗) = W ∗. Assume x �= ∗. By the definition of τ∗ and
Z ∈ τ∗(x), we can find a Y ∈ τ(x) such that Y ⊆ Z. Since (W, τ) is a topological
space, Y ∈ τ(x) implies �τ (Y ) ∈ τ(x). Now it suffices to show �τ (Y ) ⊆ �τ∗(Z)
by the definition of τ∗. By Y ⊆ Z, we obtain �τ (Y ) ⊆ �τ (Z \ { ∗ }). In what
follows, we show �τ (Z\{ ∗ }) ⊆ �τ∗(Z). Fix any y ∈ �τ (Z\{ ∗ }), i.e., Z\{ ∗ } ∈
τ(y). It follows from Z \ { ∗ } ⊆ Z that Z ∈ τ∗(y). Hence y ∈ �τ∗(Z).

It is easy to show by induction on formulas that M∗, x |=• ρ iff M, x |=• ρ
for all x ∈ W and ρ ∈ FormL. Then by TOP |=• ϕ → ψ, we obtain M∗, ∗ |=•

ϕ → ψ, which implies �ϕ�• ⊆ �ψ�•. Since TOP |=• ϕ, we have M∗, w |=• ϕ. By
�ϕ�• ⊆ �ψ�•, we get M∗, w |=• ψ. Hence M, w |=• ψ. 
�
Given a partially ordered frame (W,R), define τR : W → PP(W ) by putting
τR(x) := { X ⊆ W : R(x) ⊆ X }, where R(x) := { y ∈ W : xRy }. It is easy to
check that (W, τR) is a topological space. We say that (W, τR) is the derived
topological space from (W,R).

Proposition 10. Let (W,R) be a partially ordered Kripke frame. Then, its deri-
ved topological space (W, τR) is a Td-space.

Proof. Define the binary relation R over W by: uRv iff uRv and u �= v for
all u, v ∈ W . We need to show that tτR(X) ⊆ tτR(tτR(X)) for all X ⊆ W . Let
X ⊆ W and x ∈ tτR(X). Then {x }∪X ∈ τR(x). It follows that R(x) ⊆ X. Thus,
R(x)\{x } ⊆ X. Now we show that x ∈ tτR(tτR(X)), i.e., {x }∪tτR(X) ∈ τR(x),
which is equivalent to R(x) ⊆ tτR(X). Take any y ∈ R(x) \ {x }. We need to
show { y } ∪ X ∈ τR(y), i.e., R(y) ⊆ X. Consider any z ∈ R(y). We will show
z ∈ X. Since (W,R) is a partial ordering, (W,R) is a strict partial ordering,
i.e., R is irreflexive and transitive. Note that we already have xRy and yRz.
These implies xRz by transitivity of R. Since R(x) ⊆ X, xRz implies z ∈ X. 
�
Lemma 9. Log•(TdSP) ⊆ BPL.

Proof. Let ϕ /∈ BPL. By Log•(PO) ⊆ BPL, there exists a Kripke frame
(W,R) ∈ PO and a persistent valuation V and w ∈ W such that M, w �|=• ϕ
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where M = (W,R, V ). Since (W,R) is partially ordered, it follows from Proposi-
tion 10 that (W, τR) is a Td-space. It is also easy to show that V is τR-persistent.
Moreover, by induction on formulas, it is easy to show that M, x |=• ψ iff
(W, τR, V ), x |=• ψ for all x ∈ W and ψ ∈ FormL. Hence (W, τR, V ), w �|=• ϕ,
which implies ϕ /∈ Log•(TdSP). 
�

By Lemmas 7, 8, and 9, we conclude the following main theorem of this section.

Theorem 3. Log•(TOP) = Log•(T0SP) = Log•(TdSP) = BPL.

5.2 Topological Semantics for FPL

Definition 8. Let (W, τ) be a topological space. X ⊆ W is dense-in-itself if
dτ (X) = X. (W, τ) is scattered if it contains no non-empty subset X such that
X is dense-in-itself. Let us denote the class of scattered spaces by SCA.

Let us define the following topological semantics for modal formulas, where
we interpret � by the co-derivative operator. This semantics is usually called
d-semantics because we interpret ♦ by the derivative operator. Given a topo-
logical space (W, τ) and a valuation V , we write M = (F, V ) and define the
satisfaction relation M, w �• ϕ as follows:

M, w �• p iff w ∈ V (p),
M, w �• ⊥ Never,
M, w �• α ∧ β iff M, w �• α and M, w �• β,
M, w �• α ∨ β iff M, w �• α or M, w �• β,
M, w �• α → β iff M, w �• α implies M, w �• β,
M, w �• �α iff w ∈ tτ ({ v ∈ W : M, v �• α }).

Given a class S of topological spaces, we say that α is d-valid on S (notation:
S �• α) if, for each (W, τ) ∈ S, each valuation V and each w ∈ W , M, w �• α.
Given a class S of topological spaces, we introduce the following notation for all
the d-valid modal formulas on S:

MLog•(S) = { α ∈ FormML : S �• α }

Esakia [7] showed that the modal axiom �(�p → p) → �p defines the class
of scattered spaces in terms of topological d-semantics above (cf. [2, p.262]).
Moreover, Abashidze and Blass showed that GL coincides with all the d-valid
modal formulas on SCA.

Fact 6 ([1,5]). GL = MLog•(SCA).

Since the translation G1 embeds FPL into the modal logic GL, we can also
establish a completeness result of FPL with respect to the class SCA, as follows:

Theorem 4. Log•(SCA) = FPL.
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Proof. First we show Log•(SCA) ⊆ FPL. Assume ϕ /∈ FPL. By the transla-
tion G1, G1(ϕ) /∈ GL. By Fact 6, we can find a scattered space (W, τ) and a
valuation V and a point w ∈ W such that (W, τ, V ), w ��• G1(ϕ). Define a new
(τ -persistent) valuation V ′ by V ′(p) = �τ (V (p)), i.e., the interior of V (p). Then,
we can show that (W, τ, V ), v �• G1(ψ) iff (W, τ, V ′), v |=• ψ for all v ∈ W and
all ψ ∈ FormL. It follows that (W, τ, V ′), w �|=• ϕ hence ϕ /∈ Log•(SCA).

Now we establish FPL ⊆ Log•(SCA). Take any ϕ ∈ FPL and consider any
scattered space (W, τ). Fix a τ -persistent valuation V and a point w ∈ W . Let
M = (W, τ, V ). Our goal is to show M, w |=• ϕ. By induction on ψ, we can
show that M, v |=• ψ iff M, v �• G1(ψ) for all v ∈ W . It suffices to show
M, w �• G1(ψ). Since ϕ ∈ FPL, our translation G1 tells us that G1(ϕ) ∈ GL.
By Fact 6, we conclude M, w �• G1(ψ). 
�

6 Conclusion

This paper has shown that Visser’s basic propositional logic BPL can be char-
acterized in different ways. First, it can be embedded into the modal logic wK4
as a corollary of our embedding theorem for extensions of BPL into modal
logics (Theorem 1). Second, it can be characterized by several different Kripke
semantics. This is summarized in the following table (Theorem 2):

Weakly-transitive Transitive Pre-order Partial order

Log(WT) = BPL Log(TR) = BPL [18] Log(PRE) = Int Log(PO) = Int

Log•(WT) = BPL Log•(TR) = BPL Log•(PRE) = BPL Log•(PO) = BPL

Moreover, we developed topological semantics for BPL, which is summarized
in the following table (Theorem 3):

Topological spaces T0-spaces Td-spaces

Log(TOP) = Int Log(T0SP) = Int Log(TdSP) = Int

Log•(TOP) = BPL Log•(T0SP) = BPL Log•(TdSP) = BPL

Finally, we also showed that FPL can be characterized as the logic of scat-
tered spaces with the help of the embedding of FPL into GL (Theorem 4).

There are several directions for further research. First, we may investigate
the logic of the rational numbers Q, the real line R or Eucledean space R

n in
the syntax of BPL. Second, we may consider the dual version of BPL similarly
to the dual-intuitionistic logic where propositions are interpreted by closed sets.
In the dual version of BPL, the derived set operator will play a more direct role
than in BPL. Finally, there are several studies of first-order extension of BPL
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over Kripke semantics [11,14], and it would be interesting to consider if it is
possible to provide a topological semantics for the first-order extension of BPL
or FPL.

Acknowledgement. We would like to thank the anonymous reviewers for helpful
corrections and comments. We also would like to thank the audience of the presentation
at Tenth International Tbilisi Symposium on Language, Logic and Computation. The
work of the first author was supported by JSPS KAKENHI, Grant-in-Aid for Young
Scientists (B) 24700146, and the work of the second author was supported by China
National Fund for Social Sciences (grant no. 12CZX054). Finally, the first author wishes
to thank Corad Asmus for his correcting English of our paper.

References

1. Abashidze, M.: Algebraic analysis of the Gödel-Löb modal system. Ph.D. thesis,
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Between-Noun Comparisons
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Abstract. Adjectives are typically felicitous in within-predicate comparisons—
constructions of the form ‘X is more A than y’, as in This is bigger than that, but
are often infelicitous in between-predicate comparisons—‘X is more A than
(y is) B’, as in *Tweety is bigger than (it is) heavy. Nouns, by contrast, exhibit
the inverse pattern. The challenge is to account for the felicity of between-noun
comparisons, such as more a duck than a goose, while capturing the infelicity of
within-noun comparisons, such as #This bird is more a duck than that one.
Postulating even only ad hoc, meta-linguistic gradable interpretations for noun
to capture the meaning of between-noun comparisons results in wrong predic-
tions for within-noun comparisons and other gradable constructions (#very duck;
too duck). To address this challenge, the paper exploits the psychological notion
of a contrast-set. The solution correctly predicts inference patterns and truth
value judgments.

Keywords: Gradability � Noun � Adjective � Dimension � Comparison �
Contrast set

1 Comparison Constructions with Adjectives vs. Nouns

Within-predicate comparisons are constructions such as (1a), whose interpretation
involves a comparison of two entities along the ordering dimension of a single pred-
icate. By contrast, between-predicate comparisons—the main focus of this paper—are
constructions such as (1b) that involve a comparison of either one or two entities along
the dimensions of two different predicates. Many adjective pairs exhibit incommen-
surability in that they cannot felicitously co-occur in a between-predicate comparison
(Kennedy 1999), as illustrated in (2).

Nouns behave differently. First, most of the degree morphemes which classically
combine with adjectives are incompatible with nouns (#Ducker, #Duckest, #duck
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enough, #too duck, #very duck). The situation persists across languages (see Baker
2003 for a review). In particular, within noun comparisons such as (3a) and its Hebrew
equivalent (3b) are infelicitous. In English, for a within-noun comparison to be felic-
itous, the noun must be the complement of a preposition such as of in (3c). Languages
like Hebrew do not allow this possibility.

Interestingly, the felicity of within noun comparisons such as those in (3), namely
comparisons with bare nouns (i.e., nouns not modified by of, typical of, much of, or the
like), improves significantly in contexts that trigger a shift away from the literal
interpretation of the noun.

Thus, an utterance of (3a), which is odd in the context of real ducks, as in the
picture in the left side of Fig. 1, significantly improves in the context of toy ducks, as in
the picture in the right side of Fig. 1 (many thanks to Moria Ronen for this example and
picture). The Hebrew (3b) becomes completely felicitous. The status of the noun
barvaz (‘duck’) with other degree morphemes improves as well. However, once a
literal interpretation is enforced, comparison and degree morphology more generally
becomes clearly infelicitous again, as in the use of (4) in the context of the toy ducks in
Fig. 1. This fact strengthens the generalization: Default literal interpretations of nouns
are incompatible with the semantics of within-predicate comparison morphemes and
morphemes with similar distributional constraints.

At the same time, nouns do occur freely, even more freely than dimensional adjec-
tives do, in between-predicate comparisons. This is illustrated with the examples in (5).

Fig. 1. Literal and nonliteral (‘duck-like’) readings of duck
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In sum, adjectives are typically more felicitous in within- than in between-predicate
comparisons, while in nouns, typically, the situation is reversed. This poses a problem
which this paper sets out to address. The problem is how to account for the felicity of
nouns in between-predicate comparisons, while capturing their infelicity in within-
predicate comparisons. A postulation of even only ad hoc, contextual, meta-linguistic,
last resort gradability to capture, for instance, (6c) or its Hebrew equivalent (6d), results
in wrong predictions for (6a) and its Hebrew equivalent (6b).

Although noun comparisons are the main focus of this paper, a short inspection of
the interpretation of adjectival comparisons may help track the way the interpretation of
noun comparisons diverges. The orderings associated with the adjectives in the felic-
itous between-predicate comparison (1a), The sofa is (2 centimeters) longer than {it,
the table} is wide, are based on measurements of length and width. The degrees of these
two measurement scales align by virtue of a common unit, namely the length of a
conventional object (such as any centimeter or inch ruler). The ratio between the length
of the meter and the length of an entity is a number that can be meaningfully compared
to the ratio between the length of the meter and the width of an entity.

Similarly, in (7a), the degree to which a ladder is (not) tall compares to the degree
to which a house is (not) high (Büring 2007; Heim 2008), for tall and high share a unit.
In (7b), again, common units, for example, seconds or minutes, allow for comparison
of the degree to which a clock is fast and the degree to which it is slow with respect to
the actual time, comparison of deviations from a midpoint, the correct time, in different
directions (Kennedy 1999).

By contrast, the orderings of the adjectives in the infelicitous (2a), #The table is
longer than the sofa is heavy, are based on measurements that do not share a standard
unit. Therefore, a unit-based comparison is impossible.

All of these examples reveal the importance of the notion of degree differences (or
intervals) in the interpretation of statements with adjectives. Our conceptualization of
entities in the world is sensitive not only to the ordering determined by their length, but
also to the differences between their lengths, as well as the ratios between these
differences. This fact renders adjectives compatible with gradability morphemes
whose interpretation is mediated by degree-difference operations. For example, on a
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widespread view,1 the truth conditions of, e.g., (1a), The sofa is two centimeters longer
than the table yield truth iff the difference between the length of the table and of the
sofa equals twice the length of a centimeter unit object. Other adjectival morphemes
whose semantics relates to length intervals include slightly and very (as in The table is
slightly longer than the sofa is wide).

One explanation for the incompatibility of nouns with this type of gradable mor-
phemes is, therefore, that they denote ordinal properties, namely properties that encode
entity orderings, but do not reliably reflect differences and ratios between entities
(Sassoon 2010). Accordingly, gradability and comparison in nouns is not unit-based. In
fact, except for adjective nominalizations, such as height and length, no noun or noun
comparison reported in the literature is associated with unit-based measure phrases.
Combinations like *two degrees (a) bird and *two bits more (of) a bird are infelicitous.
Ordinal interpretations also explain the infelicity of nouns with difference morphemes,
including within-predicate comparison morphemes, as in (3)–(4). Even vague differ-
ence modifiers, which do not refer to conventional units explicitly, cannot naturally
modify nominal comparisons, e.g., #slightly more (of) a car than a truck is judged
infelicitous.

Thus, between-noun comparisons are not based on a common unit. Nor are they
based on deviations from a midpoint, as in (7b), My clock is faster than your clock is
slow, which entails the positive formsMy clock is fast and Your clock is slow. An entity
a, which is not a car, can be more a car than a truck, and an entity b, which is not a
truck, can be such that a is more a car than b is a truck. A semantic representation
should allow between noun comparisons but not within-noun comparisons or between-
noun comparisons based on units or degree differences.

The analysis of between-noun comparisons should capture several additional
challenging properties. The first one is a preference for single arguments. Speakers
clearly prefer the construction in (8a) to the one in (8b).

A second property is the strong metalinguistic inference speakers derive from such
comparisons. From (8a) it follows that the speaker prefers to call Tweety a bird than to
call him a mammal, at least if these are the only available options.

Third is the negative flavor of such comparisons. Upon an utterance of a between-
noun comparison, it is understood that the two nominal labels are not optimal options,
for otherwise the speaker would have asserted simpler categorization statements with
the given nouns, such as those in (9).

1 Cf. von Stechow (1984), Schwarzschild and Wilkinson (2002), and Sassoon (2010).
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The fourth and last property relates to the fact that the metalinguistic implications of
comparisons of two different entities, as in (9b), seems to be considerably weaker.
Examples such as (9b) are felt to be less useful or informative, for it is not clear what
can be inferred from them (if (9b), then what?). Once the analysis is presented, this
observation will be cashed out by showing that inferences from single entity between-
noun comparisons such as (8a) are lost in two entity comparisons such as (8b).

To be sure, these types of comparison are not exclusively restricted to nouns. For
instance, the examples in (10) resemble the between-noun comparisons in (8) more
than they resemble the between-adjective comparisons in (1b) and (7).

Existing analyses classify such examples as metalinguistic or indirect comparisons.
Giannakidou and Yoon (2011) describe such examples as comparisons of appropri-
ateness or subjective preference of propositions according to speakers. Morzycki
(2011) describes them as comparisons along degrees of imprecision of propositions.
For example, (11a), on this analysis, conveys that the degree of precision required to
render Ram intelligent is lower than the one required to render Dan tall. Bale (2011)
argues that these are comparisons of ranks. Thus, (11a) is true iff the number of entities
at least as tall as Dan is greater than the number of entities at least as intelligent as Ram.
Similarly, McConnel Ginnet (1973), Klein (1980) and van Rooij (2011) argue that
(11a) is true iff for some modifier M (e.g., slightly, pretty, very, very very, very very
very), Dan is M tall is true, but Ram is M intelligent is not true.

All these analyses capture the metalinguistic flavor of between-noun comparisons.
However, they fail to explain the fact that in languages with two different morphemes
for ordinary and metalinguistic comparisons, such as, e.g., Greek, both types of mor-
pheme license between-noun comparisons (Giannakidou and Yoon 2011). This sug-
gests that noun comparisons and similar adjectival comparisons can be more than
merely metalinguistic in nature.

Moreover, none of these analyses is restricted enough. The imprecision analysis is
the most restricted (Morzycki 2011). However, if gradable interpretations based on
imprecision are generally available for nouns, within-noun comparisons of the form ‘X
is more A than Y (is A)’ are predicted to be licensed as well, namely, between-
predicate comparisons with a single noun hosting both of the nominal positions (such a
noun would not be seen overtly in the than-clause due to its recoverability). This
prediction is not borne out; for instance, there is a notorious felicity contrast between
This creature is more a crab than a lobster and #This creature is more a crab than that
creature is. The latter is judged less natural despite the fact that the propositions This is
a crab and That is a crab may differ in terms of their distance from the truth at least as
much as the propositions This is a crab and This is a lobster may. In the same way, the
ranks of each two entities with respect to being a crab may differ as much as their ranks
with respect to being a crab and being a lobster may. And if gradable interpretations
based on speaker preferences are available for nouns (Giannakidou and Yoon 2011),
again, within-noun comparisons are predicted to be licensed, contra to fact.
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This argument can be generalized. Analyses that assign gradable interpretations for
nouns wrongly predict that they be freely licensed in gradable constructions, contra to
fact (e.g., #the most bird; #too bird; #very bird).

In conclusion, we need an analysis of between-noun comparisons that will explain
why the distribution of nouns is restricted to this and no other gradable constructions.
To uncover the semantics of this construction, we need to look deeper at the type of
conceptual gradability underlying categorization in nouns.

2 Toward a Solution

An important observation arises from the preceding discussion. The analysis of
between-noun comparisons such as Chevy is more a car than a truck must involve
orderings based on at least two nominal predicates. Such a solution would elegantly
block the possibility of felicitous usage of within-noun comparisons, such as #This
Chevy is more a car than that Chevy, for the latter only has one predicative argument.

The next section develops an implementation of this idea, making crucial use of the
psychological notion of contrast-based categorization presented in Sect. 2.1. This type
of categorization rests on competition between linguistic concepts that are perceived as
contrasting, namely as denoting non-overlapping categories. Following the presenta-
tion of a contrast-based analysis in Sect. 2.2, a generalization is proposed for the case of
comparisons involving linguistic concepts that are perceived as denoting overlapping
categories. Distinctions in inference patterns are discussed.

2.1 Contrast-Based Categorization

Consider the following between predicate-comparisons. The common denominator
between these three examples is that the predicate pairs occurring in them are perceived
as contrasting. Contrasting concepts easily compare.

The nouns in (11a) denote taxonomical categories, the borders between which
ought to be fully discriminated. As for the adjectives in (11b, c), instead of a unique
antonym, a set of contrasting categories KP plays a role in their interpretation as well:

The idea that contrasting categories affect categorization was introduced within
dimension-based categorization theories (see Tversky 1977; Hampton 1995; Smith and
Minda 2002, among others). On these analyses, entities classify under nouns iff their
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values on multiple dimensions sufficiently match the ideal values for the noun. The degree
of an entity in a given noun is built by addition or multiplication of its degrees of similarity
to the ideal in multiple dimensions. The resulting weighted sum or product should exceed
a threshold—a membership standard—for the entity to classify under the noun.

This standard-based categorization principle predicts many offline and online
typicality effects. Importantly, it predicts the monotonic relation between likelihood of
categorization of an entity and its similarity to the prototype; e.g., Hampton (1998)
found a very strong coupling between the mean typicality ratings of items and the
probability that they were categorized positively in about 500 items of 18 categories.
Thus, this theory captures the fact that we can determine membership of infinitely
many new instances, on the basis of a finite set of known facts about dimensions and
category members. Newly encountered entities whose mean similarity is higher than
that of known members can be automatically regarded as members.

However, in Hampton’s (1998) data, there were also systematic dissociations
between typicality and membership present. One of the three main reasons for them
was the existence of contrast concepts. For example, both kitchen utensil and furniture
were part of the stimuli. This reduced the likelihood of classification, but not the
typicality of items like a refrigerator in the category furniture. To account for this,
concepts P are often assumed to belong to a contrast set, KP, of at least two disjoint
categories that cover a local domain, DKp:

Contrast-based categorization is defined as follows. First, as stated in (14a), the
similarity degree of d in P, Deg(d,P), is normalized relative to the sum of d’s degrees in
the concepts of KP. The resulting degree—the ratio between d’s similarity to P and d’s
similarity to the contrast categories—represents the extent to which d is P and not
anything else. Second, as stated in (14b), an entity is classified in the contrast concept it
resembles most, namely in the concept that yields the highest normalized degree.

For example, assume that the contrast set is the triple K = {P, Q, Z}, and consider
two items d1 and d2 whose degrees are listed in Table 1. Because the sum of degrees of
each entity is 1, the normalized degrees are identical to the original similarity degrees.
In each predicate P, Norm(d,P,K) = Deg(d,P)/1. As the table indicates, d2 is more
similar to Z than d1 (0.40 > 0.34), but d1 is Z, the category which d1 resembles most,
(0.34 > 0.33 = 0.33) and d2 is P, the category d2 resembles most (0.42 > 0.40 > 0.18).
Thus, membership likelihood may not be monotonically related to normalized simi-
larity: d2 is more of a Z than d1, but is not classified under Z.
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The situation is different, however, with binary contrast sets K = {P, Z}, as in
Table 2. Recall that the normalized degree of an entity in a predicate equals its degree of
similarity to that predicate divided by the sum of its degrees of similarity to the contrast
concepts, e.g., for d2, Norm(d2,P,KP) = deg(d2,P)/(deg(d2,P) + deg(d2,Z)) = 1/
(1 + 0.66) = 0.60. Thus, as Table 2 indicates, d1 is Z, the category d1 resembles most in
K, and d2 is P, the category d2 resembles most in K. Before normalization d2 is more
similar to Z than d1, but with respect to K, d2 is less so. For example, a refrigerator better
exemplifies the noun furniture than a lamp (cf., d2 vs. d1’s degrees in Z at the right side
of Table 2), but relative to a contrast set K comprising of the nouns furniture and kitchen
utensil, the refrigerator classifies as a kitchen utensil, while the lamp classifies as a piece
of furniture (cf., d2 vs. d1’s normalized degrees in Z at the left side of the table).

Importantly, in a binary contrast set, by definition, the normalized degree of an entity
in one concept equals 1 minus its degree in the contrast concept. For any d, Norm(d,Z,
{P,Z}) = 1 – Norm(d,P,{P,Z}). Thus, if d1’s normalized degree in P is bigger than d2’s,
then d1’s normalized degree in Z is smaller than d2’s. For instance, if the entities’
degrees in P are a and b such that 1 ≥ a > b ≥ 0, then their degrees in Z are 1 – a and 1 – b,
respectively, where 1 – a < 1 – b. Together with the fact that entities classify in the
category to which they resemble most, this means that d2 being more Z than d1 relative
to {P,Z} is incompatible with classification of d1, but not d2, under Z. The reason is that
if Z is the category to which d1 resembles most, then Norm(d1,Z,{P,Z}) > ½. Hence,
Norm(d2,Z,{P,Z}) which is a higher degree, is definitely bigger than ½, meaning that it
as well should classify under Z relative to {P,Z}.

In conclusion, in binary contrast-sets, membership is coupled with normalized
similarity. If |KP| = 2, new entities, which are more P relative to KP than known Ps, can
be automatically regarded as P relative to KP.

2.2 Contrast-Based Comparisons

Most of the predicates with more than one contrasting category seem to be nouns or
noun phrases of taxonomic categories, for instance, animals and plants, but other nouns

Table 1. Degrees and normalized degrees in contrast categories

Table 2. Degrees and normalized degrees in binary contrast categories

Between-Noun Comparisons 283



as well as adjectives can also be regarded as contrasting within a suitable context.
Many between-noun comparisons, and some between-adjective comparisons, appear
intuitively to involve concepts of the same contrast set. The following semantics
reflects this intuition, by taking between-noun comparisons, and similar adjectival
comparisons, to be comparisons of degrees normalized relative to a contrast set K
consisting of the predicative arguments of more (cf., Sassoon 2013).2

For example, in deciding whether Tweety is more a bird than Mister Ed is a
mammal, the contrast set K consists of the predicative arguments of more, bird and
mammal, as in (16a). As contrastive categories, they ought to be treated as contextually
disjoint and the only alternatives covering a local domain of discourse. The similarity
of an entity to a contrast concept is normalized relative to K. As shown in (16b–c), an
entity’s normalized degree is the ratio between its similarity to the category applied to it
and its similarity to the contrast category – the one applied to the compared entity.

The normalized degrees of the entity-arguments compare. Thus, the given sentence
is true in w and g iff Tweety is closer to the prototype of bird than Mister Ed is close to
the prototype of mammal, when taking only these two prototypes into account.

This account captures the special features of between-noun comparisons. First,
recall that these type of comparisons has a strong metalinguistic flavor; e.g., from
Tweety is more a bird than a mammal, it follows that the speaker prefers to call Tweety
a bird than to call him a mammal, at least if these are the only available options. Recall
that in binary contrast sets, categorization is always monotonic to similarity. Thus,
Tweety is more a bird than a mammal implies that Tweety is a bird, given the contrast
set. This gives rise to the implication that the speaker prefers to call Tweety a bird than
to call him a mammal.

2 For generality, this semantic definition is formulated for the two-subject case. The preference for a
single subject is explained below.
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Second, this type of comparison has a negative flavor. It is implied that mammal
and bird are not optimal labels for Tweety, for otherwise the speaker would have stated
that Tweety is a bird, not a mammal. The comparison construction does not entail this
alternative statement. If the contrast set is bigger, or if categorization is not based on a
contrast set, Tweety may not classify as a bird. In fact, the message that the speaker
prefers to call Tweety a bird than to call him a mammal is likely to be informative
precisely when the default setting of parameters for categorization – the dimen-
sions, their weights, and the set of contrast categories, if such a set is involved as a
default – do not render Tweety a bird. Only the setting of parameters with
K = {bird, mammal} does so.

Third, for many speakers the construction in (16a) is preferred to the one in (17a).

The problem with (17a) is a low potential for inference. Tweety is more a bird than
Mr. Ed is a mammal implies very little about their categorization. They may both be
birds or both be mammals relative to {bird, mammal}. Only single-entity comparisons
have categorization entailments; e.g., (16a) entails that Tweety is a bird relative to K,
but the two entity comparison in (17a) is consistent with Tweety not being a bird
relative to K. The normalized degrees of a single entity are complementary in the sense
that they sum up to 1. This is the source of the metalinguistic inference – the bigger
normalized degree of an entity is also the biggest one for that entity. This is also the
reason for the absence of inference in two entity comparisons. The compared degrees in
such comparisons need not be the highest ones for any of the entities.

For the two entity comparison in (17a), we only derive weaker entailments, such as
the trivial (18a–c).

To see this consider again the context given in Table 2. In this context, (17a) is true
because for K = {bird, mammal}, Norm(⟦Tweety⟧w,g,bird,K,w,g) = 0.60, which is
bigger than Norm(⟦Mr. Ed⟧w,g,mammal,K,w,g) = 0.51. (18a) is also true for the exact
same reason. At the same time, (18c) is true, and so is (18b), because Norm(⟦Mr. Ed⟧w,
g,bird,K,w,g) = 0.49, which is bigger than Norm(⟦Tweety⟧w,g,mammal,K,w,g) = 0.40.
This result follows from the fact that the two normalized degrees of each entity in a
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binary contrast set sum up to 1, as explained above. Thus, ‘X is more A than Y is B’
entails that ‘Y is more A than X is B’ as well. This shows how little informative value
such statements carry. Examples of the form ‘X is more A than Y is B’ appear to only
contradict examples of the form ‘X is more B than Y is A’ (but see the discussion of
overlapping categories below). Finally, despite the fact that Mr. Ed is more a bird than
Tweety is a mammal, Mr. Ed is not a bird relative to K, for the contrast concept it
resembles most is mammal (0.51 > 0.49). This illustrates that in two entity comparisons
the metalinguistic flavor is lost.

To illustrate the intuitive basis of these inferences consider (19a). It is intuitively
true because the dolphin resembles a fish not a bird, while the platypus resembles both.
This truth value judgment is captured by the proposed analysis, for both of the degrees
of the platypus in these circumstances appear close to 0.50, as opposed to the dolphin’s
two less balanced degrees. Also, intuitively, it holds true, as predicted, that the Platypus
is more a fish than the dolphin is a bird, merely because the dolphin does not resemble a
bird in any way, while the platypus does resemble a fish in some ways. This is an
illustration of the pattern of inference from ‘X is more A than Y is B’ to ‘Y is more A
than X is B’. Finally, (19a) does not imply that the dolphin is a fish relative to
K = {fish, bird}. Thus, this construction is more marked for lack of inferential power.

We accept usages of this construction mainly in trivial cases such as those illus-
trated in (19b). (19b) is clearly true merely because the dolphin is a mammal, and the
platypus, which is a mammal too, is not a bird. But precisely because the dolphin is a
mammal, (19b) sounds odd (it is too weak).

Notice also that different entities may render salient different contrast categories.
We have world knowledge telling us that the platypus and dolphin are mammals, or
borderline between mammal and bird and between mammal and fish, respectively.
Thus, we may be disposed to add the contrast concept mammal, or even accommodate
different contrast sets when relating to these species as in (19a). But this creates a clash
with the semantics that strictly defines the contrast set as the two compared nouns. In
addition, such a move only decreases the inferential power. Recall that for a binary set
such as {bird, mammal}, (17a) is predicted to entail (18b), because the normalized
degrees of each entity sum up to 1. For a bigger contrast set, even this inference is lost.
Table 3 illustrates this case. Tweety is more a bird than Mr Ed is a mammal, because
0.3 > 0. However, it is not the case that Tweety is less a mammal than Mr. Ed is a bird,
Tweety is more so, because 0.2 > 0.3

It is now the time to give a solution to the main problem this paper set out to
address. A clear advantage of the contrast-based analysis over existing alternatives is
that contrast-based more in statements of the form ‘X is more P than (y is) Q’ cannot be
licensed when P and Q are one and the same predicate.

3 Notice that the television figure called Mr. Ed is actually a talking horse, not a fish.
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The notion of a contrast set K presupposes the existence of at least two different
contrast concepts, |K| > 1, namely, P ≠ Q. This is so for a reason. All entities are
predicted to always be equally A relative to the singleton contrast set {A}. The reason
for this is that a degree normalized relative to one and the same predicate always equals
1, for Norm(d,A,w,g) = deg(d,A,g,w)/deg(d,A,g,w). The only exception to this gen-
eralization is the undefined case, 0/0. These results explain the fact that a statement of
the form ‘X is more a bird than Y’ is intuitively considered false. This judgment
emerges precisely because all birds are judged to be equally so. This judgment persists
despite of the fact that speakers are willing to admit graded exemplariness judgments
when interpreting statements of the form ‘X is more (typical) of a bird than Y’.4

Last, but not least, an analysis in terms of a contrast set has to be generalized to
apply to comparisons with nouns that refer to potentially overlapping categories.
Examples include the nouns in (20a), pianist and composer, among many other nouns
that name human traits, dispositions, habits or professions. Importantly, comparisons of
overlapping categories exhibit systematically different inference patterns. In particular,
we may hold both (20b) and (20c) true together.

Table 3. Degrees and normalized degrees in nonbinary contrast categories

Normalized degrees: Fish Bird Mammal Sum

Mr. Ed 1 0 0 1
Tweety 0.5 0.3 0.2 1

4 Contrast based comparisons differ significantly from typical within-adjective comparisons. Degree
modifiers such as the ones in (a) below can modify adjectival comparisons and contribute an
evaluation of the size of difference between the degrees of the compared entities. Adjectives denote
mappings to degrees for which a difference or ratio operation can meaningfully apply. By contrast,
categorization under nouns is not mediated by degrees for which differences or ratios are meaningful.
The nominal degrees are based on context sensitive dimensional weights and on various
transformations such as inversion and normalization that leave little chance for any degree
differences or ratios to be preserved. Hence, it is not surprising that difference and ratio modifiers are
ungrammatical within contrast-based comparisons that exploit the nominal type of degree
calculation, whether they contain nouns or adjectives, as (b–e) illustrate (Morzycki 2011).

a. George is {much, slightly, somewhat, a lot, no, three times} taller than Bill.
b. George is {much, ?slightly, ??somewhat, ??a lot, ?no, ?? three times} more dumb than crazy.
c. George is dumb {much, *?slightly, *?somewhat, *?a lot, *?no, ?? three times} more than crazy.
d. Tweety is {much, ?slightly, ??somewhat, ??a lot, ?no, ?? three times} more a bird than a mammal.
e. Tweety is a bird {much, *?slightly, *?somewhat, *?a lot, *?no, ?? three times} more than a

mammal.
Notice also the oddity of contrast based comparisons such as more a duck than {a tree, a table, a
cloud}. The reason on the rationale of the present analysis is triviality. It makes little sense to
compare ducks and trees unless some entity exists which is half way between a duck and a tree.
Indeed, in the context of such an entity, the example appears to become acceptable. This suggest that
it is ruled not by a grammatical constraint, but only by a pragmatic ban on triviality.
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We may aim to treat the compared nouns in (20b, c) as contrasting, but this would
rule out the possibility that both (20b) and (20c) be simultaneously true. Thus, let us
conclude the discussion with a generalized definition of normalized degrees which will
be of use in such cases. The problem parallels that of the calculation of probabilities of
overlapping events e1 and e2. The solution requires resort to the set of disjoint sub
events e3, e4 and e5, such that e1 = e3 + e4 and e2 = e3 and e5. Similarly, the generalized
definition of contrast comparisons uses for, e.g., (20b,c), the set of disjoint contrast
categories philosopher who is not a linguist (P&¬L), linguist who is not a philosopher
(L&¬P) and one who’s both a linguist and a philosopher (L&P). The degree of each
entity in linguist and philosopher is normalized relative to these disjoint categories.

In non overlapping categories, the value (Deg(d,A & B,w,g) equals zero. Thus, the
generalized definition reduces to the one presented earlier. Table 4 illustrates the utility
of a generalized notion of a contrast set for the case of overlapping categories.

A suitable context for this table is one in which Bill’s work is truly interdisci-
plinary; his work is distinguished relative to the work of specialists both in linguistics
and philosophy. Mary, by comparison, is an ordinary linguist. She does linguistics
research reasonably well, but only rarely does her work have any philosophical sig-
nificance, and she never asks purely philosophical questions. The shift to the disjoint
contrast-set allows for an assignment of normalized degrees for each entity that sum up
to more than just 1; e.g., the sum of normalized degrees is 1.1 in Mary’s case, and it is 2
in Bill’s case. This reflects the potentially overlapping nature of the concepts in
question, and the degree to which each entity exemplifies each concept separately or
both concepts together.

In conclusion, for entities to compare relative to a nominal concept A either a
designated morpheme ought to mediate the interpretation such as typical or the bare
particle of, or another concept B ought to occur and license a contrast-based com-
parison. In that case, a tendency toward interpretations relative to binary contrast sets
and single entities emerges so as to increase the inferential power, which is reduced in

Table 4. Degrees and normalized degrees in overlapping categories

Degrees:
%

P&¬L L&
¬P

L&P Normalized
degrees:

Norm(P)
deg(P&¬L)
+deg(P&L)

Norm(L)
deg(L&¬P)
+deg(P&L)

Sum

Frank 0 0 100 100/100 = 1 100/100 = 1 2
Galit 10 80 10 10 + 10/

100 = .2
90/100 = .9 1.1
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more than two-category or two-entity comparisons. Moreover, comparisons with non-
disjoint categories support a generalized definition of normalized degrees. The resulting
analysis of contrast comparisons captures intuitive truth value judgments and inference
patterns in disjoint vs. overlapping categories. Future research should determine
whether it extends to between-adjective comparisons that are typically analyzed as
metalinguistic or indirect.

The theory of contrast based categorization was developed based on experimental
research. Its linguistic significance has yet to be pinned down, including its connection
to other alternative-based mechanisms such as those used in Aloni et al. (2013) or for
implicature calculation.
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Abstract. The paper focusses on the syntactic and semantic licensing condi-
tions of constructions like Max akzeptiert es, wenn Lea Geige spielt. ‘Max
accepts it if Lea plays the violin’. The clause introduced by wenn ‘if’ has a
double function in that it is an adverbial that provides the protasis of an
implication as well as the propositional argument of a matrix predicate. The
paper argues against Pullum [15], Pesetsky [14], and Hinterwimmer [8], sug-
gesting that the conditional conjunction wenn encodes two implication types: the
classic type: if p is contingent and true, then q(p) and the preference type: if p is
contingent, then q(p). Additionally, the paper focusses on the characteristic
properties of the matrix predicates that license argument conditionals.

Keywords: Conditionals � Sentential proform � m-command � Potentially
factive predicates � Preference predicates

1 The Phenomenon

This paper discusses German constructions in which the propositional argument of a
clause-embedding verb is provided by a clause having the form of a conditional – cf.
(1a-c).1 Here the latter are called argument conditionals. In German, an argument
conditional can be introduced by either falls in case’ or wenn ‘if’ or it can occur as a
V1-conditional.

(1) a. Wir bedauern (es), wenn er nicht bereit ist  zu kommen.  
we  regret        it      if     he not  willing is to come

b. Wir bedauern (es), falls er nicht bereit ist zu kommen.
c.
d.

Ist er nicht bereit zu kommen, bedauern wir es. 
Wir bedauern (es), dass er nicht bereit ist zu kommen.

Fabricius-Hansen [5], Zifonun et al. [28] and Kaiaty [9] call German argument
conditionals “Ergänzende wenn-Sätze” ‘complementary wenn-clauses’ since they

The author gratefully acknowledges the helpful discussions with Robert Fittler and Hubert
Truckenbrodt, as well as the comments of the anonymous reviewers.

1 Each construction type shown here can be exemplified by a corpus example provided by the ZAS-
Database on clause-embedding predicates.
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somehow provide the propositional argument for a matrix predicate. As for English
constructions like (2), they are called “non-logical if-clauses” by Pesetsky [14],
“complement if-clauses” by Pullum [15], “irrealis if-clauses” by Rocchi [17] or
“protasis-referring conditionals” by Thompson [27].

(2) John would like it if Mary knew French.

Argument conditionals also occur in many other languages as for instance in Polish
(3a), Italian (3b) and even in creole languages such as, for instance, the English based
creole language Kamtok (3c) – cf. Schwabe et al. [24] and Rocchi [17].

(3) a. Słyszałam, e duchy uwielbiaj je  li si je czci   
 hear.1SG.PST that spirits adore.3PL if      REFL they.ACC worship.3SG

NKJP, 1991/10/1
Mi piace se la  gente  mi sorride   
me please.3SG if  the people me smile.3SG.IND

c. E  fo beta fo   yi if dem no fo born yi   
COND better for 3SG if  3PL    NEG  COND bear   3SG

'I heard that spirits adore being worshiped.'
b.

'I like it if people smile at me.'

it  
'It would be better for him if he had not been born.’ Gud Nyus, 14/3

As to the syntactic status of the argument wenn-clause, the paper regards it as an
adverbial. This view is not uncontroversial. Thus, Schmid [19], Eisenberg [4], Breindl
[2], and Pasch et al. [13] regard such clauses primarily as complements, more precisely,
as complements with an adverbial function. Similar to Fabricius-Hansen [5], Kaiaty
[9], Rothstein [18] and Thompson [27], Schwabe [22] suggests that argument condi-
tionals are pure adverbials. Thus, this paper will focus on a discussion of Pullum [15],
Pesetsky [14] and Hinterwimmer [8], who consider argument conditionals as origi-
nating in a complement position and moving to an adverbial position. Furthermore, the
paper will focus on the classes of matrix predicates licensing argument conditionals.
It will show that factivity is neither a necessary nor a sufficient condition.

2 Syntactic Analysis of German Argument Conditionals

2.1 Syntactic Data to be Explained

As for German, there is a fundamental difference between constructions with a
canonical declarative complement dass-clause and constructions with an argument
conditional. If a dass-clause is in the left periphery, an es-correlate or prepositional
proform (ProPP) is forbidden in the subject or object position – cf. (4a) to (6a). If the
dass-clause is linked to the predicate by a preposition, it only moves with its PP-shell to
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the left periphery – cf. (6a′). If, however, an argument conditional is in the left
periphery and the propositional argument is obligatory, the latter must be expressed by
an es-correlate or by a ProPP – cf. (4b) to (6b). In other words, the complement position
must not be empty.

(4) Subject 
a. *Dass Lea Violine spielt, langweilt es/das Max. 

if Lea violin plays bores    it/das    Max
a'. Dass Lea Violine spielt, langweilt Max.
b. Wenn Lea Violine spielt, langweilt es/das Max. 

when  Lea violin plays bores    it/das    Max
b'. *Wenn Lea Violine spielt, langweilt Max.

 (5) Direct object 
a. *Dass Lea Violine spielt, akzeptiert es/das Max. 

that    Lea violin  plays  accepts    it/this   Max
a'. Dass Lea Violine spielt, akzeptiert Max.

 b. Wenn Lea Violine spielt, akzeptiert es/das Max  
if        Lea violin plays accepts it/das Max 

b'. *Wenn Lea Violine spielt, akzeptiert Max.

(6) Prepositional object
 a. *Dass Lea Geige spielte, hat Max Leo darauf aufmerksam gemacht.

that   Lea violin played has Max Leo PP[of]  advised
a'. Darauf, dass Lea Geige spielte, hat Max Leo aufmerksam gemacht.
b. Wenn Lea Geige spielte, hat Max Leo  darauf aufmerksam gemacht. 

if Lea violin played has Max  Leo PP[of]  alerted
b'. *Wenn Lea Geige spielte, hat Max Leo aufmerksam gemacht.

The picture changes slightly when the wenn-clause is post-sentential. As is the case
with a dass-clause, an es-correlate is optional – cf. (7b) and (8b). There are also a few
matrix predicates that subcategorize obligatory propositional complements where the
ProPP is optional, e.g. sich (damit) begnügen ‘content oneself with sth.’ or jm. (darauf)
aufmerksam machen ‘bring sth. to someone’s attention’ – cf. (9b). Recall that the es-
correlate or the ProPP is obligatory if the wenn-clause is in the left periphery and the
propositional complement is obligatory – cf. (4) to (6).2

2 Note that Eisenberg [4] regards es-correlates as obligatory and that Fabricius-Hansen [5] considers
constructions without them as very marked. However, it can be shown that constructions without an
es-correlate are quite frequent.
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(7) a. Max langweilt es, wenn/dass Lea Geige spielt. 
Max bores       it    if/that        Lea violin plays              

b. Max  langweilt , wenn/dass Lea Geige spielt.

(8) a. Max akzeptiert es, wenn/dass Lea Geige spielt. 
Max accepts    it   if/that        Lea the violin plays

b. Max akzeptiert , wenn/dass Lea Geige spielt.

(9) a. Max macht Leo darauf aufmerksam, wenn/dass Lea Geige spielt. 
Max alerts Leo PP[to]            if     /that Lea violin plays

b. Max macht Leo aufmerksam, wenn Lea Geige spielt.

If, however, a ProPP is obligatory, it may not be omitted even if the dass- or wenn-
clause is post-sentential – cf. (10b).

(10) a. Max stört sich daran, wenn/dass Lea Geige spielt
Max is bothered PP    if /that        Lea violin plays

b. *Max stört sich , wenn Lea Geige spielt.

As far as the relationship between the es-correlate and its correspondent clause is
concerned, subject clauses like (4) and (7) behave in almost the same manner as object
clauses do. Therefore we can neglect them in the following.

The next section discusses approaches that have mainly been designed for English.
Let’s try to find out whether they are appropriate for explaining the German data.

2.2 Accounts of English Argument Conditionals

As for a purely syntactic account, Pullum [15] advocates that the conditional undergoes
rightward movement from a complement position to a higher adjunct position, leaving
behind a trace which is spelled out as the expletive pronominal it. Pullum’s approach
seems to provide an account of the analysis of German post-sentential argument wenn-
clauses as given in (8a). However it fails with respect to the proposed expletive status
of the sentential proform it. Following Thompson [27], one could object this claim as
follows.

French, which clearly distinguishes between expletive and referential proforms – il
is expletive and ce is referential – only allows the referential ce to be in the matrix
clause of a construction with an argument if-clause – cf. (11a, b). It would be fallacious
to assume that English exhibits an expletive where French uses a referential proform.
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(11) a. Ce serait tragique si elle était partie. [= (20b) in Thompson]
'It would be tragic if she left.'

b. *Il serait tragique si elle était partie. [= (20a) in Thompson]

Moreover, the English it as well as the German es can be replaced by a referential
demonstrative, as shown in (12a, b).

(12)  a.  If we had a cheese plate in the room right now, that would be awesome.
[= (21a) in Thompson]

 b.  Wenn sie kommt, schätzt        er das ungemein.   
  if        she comes appreciates he this immensely

Furthermore, a German ProPP as in (9a) can hardly be regarded as a spell-out of a
clause which is moved to the right. If this were the case, the post-sentential clause
would be a PP, which obviously is not the case.

Additionally, as shown in (7b) to (9b) for German, it is possible for the matrix
clause to lack an overt propositional proform. Are we dealing here with a trace that is
not spelled out? The answer is no since the syntactic category of the trace in (9b),
which should be PP, would be inconsistent with the syntactic category of the relating
clause. As for (8b), the answer could be yes. But then, one would have to explain when
a trace is spelled out by an expletive and when it is not. If a proform is lacking, it is
more reasonable to assume a null proform – a null complement anaphor (NCA) in
Thompson’s [27] terms. We will return to this issue in Sect. 2.3.

Following Kratzer [10], Pesetsky [14] considers an English argument if-clause to be
the restrictor of a quantifier which quantifies over the nuclear scope, the IP in his terms.
In order to function as a restricting term, the if-clause must be in an A-bar-position
external to IP – cf. (249) in Pesetsky. If the argument clause is pre-sentential as in (13),
it is a base-generated left IP-adjunct and the sentential proform it is referential – cf.
Pesetsky (p. 72 f.).

IP

if-CP
i

IP

VP

V'

V0 iti (anaphoric pronoun) 

(13) If he played the violin right now, I would like it.

The referential it must be locally m-bound by the if-clause – cf. Pestsky’s (270) to (273)
and his (290) to (292) repeated here in (14).
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a. α locally m-binds β iff α m-binds β and there is no γ such that α m-binds 
γ and γ  m-binds β.

b. α m-binds β iff α is coindexed with β and α m-commands β.
c. α m-commands β if α does not dominate β and no maximal projection γ

that dominates α excludes β3.
d. α is dominated by β iff it is dominated by every segment of β.
e. α excludes β iff no segment of α dominates β. 

Pesetsky regards a post-sentential if-clause as a right VP-adjunct – cf. (15). Because of
its restrictor function the if-clause must move to an IP-external A-bar-position at LF.
But this will be impossible if the sentential proform is regarded as a referential proform.
If it were a referential proform, it should be locally m-bound by the if-clause. This is
prevented by the intervening trace ti – cf. Pesetsky (p. 73).

XP

if-CP
i

XP

IP

VP

VP ti

V'

V0 iti (that-CP-copy)

What could be seen as a way out of this dilemma would be to not regard it as
referential. And this is what Pesetsky proposes. According to him, a proform of a post-
sentential argument conditional is neither a referential nor an expletive. It is not an
expletive because it is theta-marked by V0. It serves as a device to copy the content of
the if-clause into the complement position – cf. (16), which corresponds to (338) in
Pesetsky.

3 As to m-command, Pesetsky proposes two versions, me- and md-command. Since the difference
between them is not relevant for our purposes, we neglect it at this place.
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(16) If-Copying Rule (IC)
 a.  Take a clause k of the form [IF IP], where k modifies a sentence Σ.
 b.  Copy k as k', substituting that for IF, making appropriate changes to 

mood so as to replace irrealis with realis mood marking. 
 c.  Place k' in an argument position of Σ. Leave k as an adjunct modifier. 

(It gets interpreted as a restrictive clause, with S the nuclear scope.) 
 d.  k' is factive. 

IC applies if the “copy” it is related to the if-clause by m-command – cf. (14). Thus, the
post-sentential if-clause has a double function. It is the restrictor of a quantifier as well
as a complement of V0. But Pesetsky’s approach evokes a few objections. One is
already known from the discussion of Pullum [15]. In French, a proform must be
referential if it is related to an argument conditional – cf. (11). Furthermore, Pesetsky’s
IC Rule does not account for constructions with preference predicates – cf. (17) and
Fabricius-Hansen [5]. Preference predicates do not presuppose factivity of an
embedded that-clause – see Sect. 3 below.

(17) Frank zieht    es vor, wenn Maria Geige spielt. 
Frank prefers it         if Maria violin plays
*If Maria plays the violin, Frank prefers that she plays the violin. 

Like Pullum’s analysis, Pesetsky’s does not account for constructions where the if-
clause is a complex construction. As shown in (18b), it is not the if-clause which is
copied into the complement position but the complement clause embedded in the if-
clause – cf. Fabricius-Hansen [5:83] for corresponding German constructionss.

(18) John would hate it if he realized that his colleague snored.  
a. #John would hate that he realized that his colleague snored if his

colleague snored. 
 b.  John would hate that his colleague snored if his colleague snored. 

Like Pesetsky, Hinterwimmer [8] also stipulates a double function for English if- as well
as when-clauses – cf. (19a, b).4 He suggests that the when-clause is base-generated as a
complement of a silent determiner in a DP-shell, which itself renders the argument of V0.5

From there, it moves to a right adjunct-position in order to serve there as a restrictor of a
quantifier. The if-clause, Hinterwimmer proposes, is base-generated as a left or right TP-
adjunct with a copy in the DP-shell. As to the it-correlate, Hinterwimmer regards it as the
spell-out of the silent determiner. He suggests two silent determiners: DETfact and DETevent.
DETfact turns a proposition which is denoted by the that- or if-clause into a fact, the latter
being an abstract entity which makes the proposition true – cf. ②. DETevent converts a
when-clause into an abstract event entity – cf. ②’. Thus, Hinterwimmer explains, the

4 (19a) corresponds to Hinterwimmer's [8] (31a) and (19b) corresponds to his (24a).
5 Sudhoff [26] provides a similar proposal for embedded dass-clauses in German.
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proform it spells out two covert determiners that denote in different domains: the domain
of facts and the domain of events. This means that predicates such as like or hate
subcategorize for fact- or event-arguments.

Hinterwimmer’s analysis accounts for the observation that a that- or when-clause can
be extraposed but must not move to the left periphery – cf. (20a, b). Movement from a
right-adjunct position of a DP-shell to the left periphery would result in a violation of
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the Principle of Unambiguous Binding (PUB) – cf. Müller & Sternefeld [12], Müller
[11] and Sternefeld [25].

(20) a. *That his colleague always snores, Paul hates it.  
b. ? When his colleague snores, Paul hates it.  

According to Hinterwimmer, English if-clauses can appear in the left periphery because
they can be base-generated as left TP-adjuncts – cf. (21).

(21) If he played the violin right now, I would like it. [= (263b) in Pesetsky [14]] 

The objections which can be raised against Hinterwimmer’s approach resemble the
ones we’ve already mentioned with respect to Pullum’s and Pesetsky’s accounts. First,
French sentential proforms must be expressed by a referential pronoun if they are
related to an argument conditional – cf. (11a). They can hardly be seen as spell-outs of
an empty determiner. Second, Hinterwimmer also faces problems with respect to
constructions with preference predicates – cf. (17) and (19)②,②’. Third, constructions
where the conditional clause itself is complex are problematic for his account – cf. (18).
An alternative way to obtain the desired representation is to regard the proform it as
referential proform that is referentially linked to the embedded clause of the when-
clause. Even if one could succeed in somehow copying the “fact” argument into the
DP-shell argument of hate, the problem becomes insolvable if there is a believe
predicate in the consequence as in (22). Here, it does not seem to be reasonable to
regard it as a determiner.

(22) Leo would believe it if Lea promised him to come.

As far as German is concerned, ProPPs turn out to be a further problem for Hin-
terwimmer’s analysis since it is hardly possible to gain access to the pronominal d–part
within the morphologically closed PP in order to get a determiner for the wenn-clause –
cf. (9a).

Rothstein [18] and Thompson [27] present a quantificational analysis that does
without the movement of the argument conditional. They regard the proform it as a
variable which is bound by an operator OP which is adjoined to IP – cf. Rothstein’s
proposal, which is taken from Hinterwimmer [8] and reproduced in (23).

(23) Paul hates it when his colleague snores. 
Gen e [[snore (e, colleague)]  e'[ o (e, e') (hate (e', paul, e)]].
where o(e, e') means that the running times of e and e' overlap. 

Here again, the analysis does not account for constructions with preference predicates
like (17). Nor does it account for constructions like (18) where the protasis itself is a
complex construction either.
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2.3 A Further Account for German Argument Conditionals

Regarding constructions like (4b) to (6b) and (24a) with a pre-sentential argument
wenn-clause and a correlate in the matrix clause, their argument wenn-clause is base-
generated as a left TP-adjunct.

Wenn Lea krank ist, bedauert es Max. 
if        Lea ill       is   regrets    it  Max

b.

a.

Max bedauert es, wenn Lea krank ist .
Max regrets    it    it       Lea ill       is

If the argument wenn-clause is post-sentential as in (7a) to (9a) and (24b), it is base-
generated as right TP-adjunct. Both the left- and the right-adjoined wenn-clause locally
m-bind a sentential correlate in a complement position – cf. (14). Depending on the
matrix predicate, the correlate is an es-correlate in the direct object or subject position.
A prepositional correlate is regarded as a V0-adjunct because it can co-occur with a
direct object. Similar to Fabricius-Hansen [5:185], es-correlates as well as prepositional
correlates are regarded here as referential proforms. They are theta-marked by V0 and
locally m-bound by the wenn-clause.

The reason why a pre-sentential dass-clause cannot co-occur with an es-correlate is
that it is base-generated as a V0-complement. When it moves to the left periphery, it leaves
a trace which prevents the correlate – cf. (4a) and (5a).6 A dass-clause that relates to a
ProPP is part of a PP-shell. It cannot leave this shell in order to move to the left periphery.

It is attested by the ZAS-database that an es-correlate or a ProPP can be missing in a
construction with a post-sentential argument wenn-clause like (7b) to (9b). As shown in
(25), the missing correlate is represented as the proform pro which is located in the

6 This view differs from Sudhoff's [26]. He assumes that the es-correlate is a part of a DP-shell so that
it cannot leave the shell when moving to the left – see the arguments against this analysis in Schwabe
[21].
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canonical complement position and theta-marked there by V0. Like an es-correlate or a
ProPP, it is referential, but unlike them, it cannot be anaphoric. The reason for this is
that its relating clause has to be in its local environment. In other words, pro must be
locally m-bound by its relating clause – cf. (14). The relating clause is regarded as a
dass-clause which is a base-generated vP-adjunct – cf. Haider [7]. It can be deleted
under conditions that are presented below.7

As for a ‘silent’ ProPP, it is additionally necessary that the ProPP is optional. This is
the case with respect to verbs like sich (damit) begnügen ‘to content oneself with sth.’ or
jm. (darauf) aufmerksam machen ‘bring sth. to someone’s attention’ – see also Sect. 2.1.

The dass-clause can be deleted if it is locally m-bound by the wenn-clause. This
implies that both are coreferential and thus alike with respect to their information
structure – cf. (26) and (27).

(26) Q: Unter welcher Bedingung akzeptierte Max, dass Lea sang? 
under which   condition  accepted    Max that Lea  sang

A1: *Er akzeptierte proσ (dass Lea sang)σ [wenn Lea sang]σ, FOC.
he accepted              that  Lea  sang    if       Lea sang

A2: Er akzeptierte proσ (dass Lea sang)σ [wenn Lea sang]σ, FOC.
 A3: Er akzeptierte esσ [wenn Lea sang]σ, FOC.

(27) Q: Was akzeptierte Max? 
  what accepted    Max 

A: Er akzeptierte proσ, FOC (dass Lea sang)σ, FOC [wenn Lea sang]σ, FOC.
he accepted              that  Lea  sang    if       Lea sang

7 The motivation for assuming ellipsis is due to Hubert Truckenbrodt (p.c.).
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A further deletion condition demands that the dass- and wenn-clauses have to be
identical, with the exception of their complementizer. In (28a), the wenn-clause con-
tains a negative polarity item which is not licensed in the dass-clause.8 An es-correlate
in the matrix clause need not be locally m-bound by a dass-clause – cf. (28b).

(28) a. *Max bedauert proσ (dass Lea einen Fehler gemacht hat)σ ,
Max  regrets   that  Lea  a        mistake made     has  
[wenn Lea auch nur einen Fehler gemacht hat]1.
if       Lea even only any             mistake made

b. Max bedauert esσ [wenn Lea auch nur einen Fehler   gemacht hat]σ
Max  regrets  it if       Lea  even only any  mistake made     has  
'Max regrets it if Lea even only any mistake has made.' 

The next condition on dass-clause deletion prevents structures with pre-sentential
wenn-clauses and pro (4b’) to (6b’) and (29). It says that the dass- and wenn-clause
must be adjacent.

(29) *[Wenn Lea krank ist]σ, bedauert Max pro σ (dass Lea krank ist)σ.
if       Lea  ill       is      regrets   Max         that   Lea ill      is

If the propositional argument is optional as is the case with respect to predicates
like schreiben ‘write’ or glücklich sein ‘be happy’, pro is not necessary – cf. (30). The
propositional variable p given by the argument structure of the matrix predicate ④
receives the index of the wenn-clause that m-binds TP.

(30) Max ist glücklich, wenn Lea singt. 
Max is happy      if        Lea sings

8 Regarding German NPI-elements see Richter & Soehn [16].
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If the variable is not bound within the sentence, it gets existentially bound – cf.
(31A). That is, (30) is ambiguous in that it can have the representation as given with
(30) ⑦ or it is represented as in (31A) where the reason for Max’ happiness is not
expressed.

(31) Q: Wann ist Max glücklich? 
when is  Max happy

A: Max ist glücklich, wenn Lea singt. 
  Max is  happy      if        Lea  sings 

p {[lea_is_singing]  [happy (max, p)]}

A complex argument wenn-clause like (32) is also a right or left TP-adjunct. It
locally m-binds the correlate in the matrix clause so that it is coreferential with the
correlate – cf. (32a). However the variable the correlate represents can also be coref-
erential with the clause embedded in the conditional – cf. (32b). This is possible
because the matrix predicates hassen ‘hate’ and merken ‘realize’ both select a clause
denoting a fact. In (33b), the proposition embedded by glauben ‘believe’ does not
represent a fact. Therefore, it cannot be coindexed with the correlate embedded by
hassen ‘hate’.

(32) Paul hasst esσ/t [wenn er merkt, [dass Leo schnarcht]σ ] t

Paul hates it if       he realizes that Leo snores.
 'Paul hates it if he realizes that Leo is snoring.'
 a. [realize (paul, [leo_snores]σ)]τ  [hate (paul, pt)]

b. [realize (paul, [leo_snores]σ)]τ  [hate (paul, pσ)]

(33) Paul hasst es*σ/τ [wenn er glaubt, [dass Leo schnarcht]σ ]τ
Paul hates  it       if      he believes         that  Leo snores.

 a. [believe (paul, [leo_snores]σ)]τ  [hate (paul, pt)]
b. *[believe (paul, [leo_snores]σ)]τ  [hate (paul, pσ)]

Example (34) shows that the complex conditional does not locally m-bind the
correlate the matrix clause. As we also will see in the next section, the reason for this is
that glauben ‘believe’ does not license an argument wenn-clause. However like in
(32b), the proposition embedded in the wenn-clause can be coreferential with the
correlate. The reason for this is that glauben ‘believe’ and sagen ‘say’ select the same
proposition type.

(34) Max glaubt esσ/*t [wenn Lea ihm sagt [dass Tim schön singt]σ ]τ
  Max believes it if      Lea him says that  Tim well   sings
 'Max believes it if Lea tells him that Tim sings well.'  

a. [say (lea, [tim_sings well]σ)]τ  [believe (max, pσ)]  
b. *[say (lea, [tim_sings well]σ)]τ [believe (max, pτ)]  
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Note that the clause embedded in the wenn-clause in (35a) and (35b) cannot be rep-
resented by pro. We already know the reason for this from the simple cases (7b) to (9b)
and (25). Pro must be m-bound by a dass-clause which can only be deleted if it is
adjacent to the clause that m-binds it.

(35) a. *Paul hasst proσ [dass Leo schnarcht]σ [wenn er merkt, [dass Leo 
Paul hates           that  Leo snores           if        he realizes that Leo

schnarcht]σ ] t

snores 
b. *Max glaubt   proσ [dass Tim schön singt]σ [wenn Lea ihm sagt [dass 

Max believes          that Tim well    sings    if       Lea him says   that  
Tim schön singt]σ ]τ
Tim well   sings  

To conclude, argument wenn-clauses are adverbials that are either left- or right-
adjoined to TP. They locally m-bind an overt correlate which is in the complement
position of V0. The correlates they bind are referential proforms that are theta-marked
by V0. Depending on the matrix predicate, the correlate can be es or ProPP. A correlate
can be non-overt, that is, pro. Like the overt correlates it is theta-marked by V0. But
unlike them, it must be locally m-bound by a dass-clause which is a base-generated vP-
adjunct [7]. The dass-clause can be deleted if it is locally m-bound by the wenn-clause.
This implies that the wenn- and dass-clauses must be coreferential and alike with
respect to their information structure and that they have to be identical with the
exception of their complementizer. It is a further deletion condition that the dass- and
the wenn-clauses are adjacent. Besides argument wenn-clauses, there are complex
conditionals containing an embedded clause which provides the argument of the matrix
predicate.

With the analysis as given in this section we have found answers to the questions
raised above: Why do pre-sentential argument conditionals allow sentential correlates,
but pre-sentential dass-clauses do not – cf. (4) to (6) and (7) to (9), and why do post-
sentential wenn-clauses allow pro, whereas pre-sentential wenn-clauses do not – cf.
(10b) to (12b) and (4b) to (6b)? What is still lacking is an answer to the question as to
which clause-embedding predicates allow argument conditionals; in other words,
which semantic properties enable them to construe constructions with an argument
wenn-clause?

3 Predicates Licensing Argument Conditionals9

According to Asher [1], Pesetsky [14] and Schwabe [20], a proposition is regarded as an
abstract object in a particular context. Its context-givenness is represented here by a
propositional index at the clause that represents it – cf. (24①). The proforms es, ProPP

9 This section only analyses constructions with simple argument wenn-clauses. Complex ones like
those in (32) to (34) are neglected here.
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and pro are considered to be variables that refer to propositions. Their context-givenness
is again represented by an index – cf. (24⑤). As to the es-correlate or ProPP, the
propositions they refer to can be given anaphorically as in (4b) to (6b) and (24) as well as
cataphorically as in (7a) to (9a). As we have seen in the previous section, correlates of a
simple argument wenn-clause are m-bound by the wenn-clause and thus coindexed with
it. A non-overt correlate must be m-bound by a dass-clause which itself is m-bound by
the wenn-clause. Thus pro, the dass-clause and the wenn-clause are coreferent.

The conjunction wenn relates two propositions in that it creates an implication
where the argument wenn-clause provides the protasis as well as the specification of the
argument variable of the matrix predicate. Depending on the matrix predicate, the
conjunction constructs two implication types. The first one concerns the classic
implication type. Here, the wenn-clause focusses on a semantic condition of the matrix
predicate τ in the consequence. The condition is that τ is true if the clause σ, which is
embedded by τ, is contingent and true. As for (36), this means that the clause Max
accepts it that Lea sings is true if Lea sings is contingent and true – cf. (36a, b).10

(36) Max akzeptiert es wenn [Lea singt]σ
Max accepts it  if         Lea sings
a. If Lea sings is contingent and true, Max accepts it that Lea sings 
b. [[lea_sings]σ  is contingent and true]  [accept (max, pσ)]τ  

Predicates like (es) akzeptieren ‘accept’, (es) ignorieren ‘ignore’ and sich darüber
freuen ‘be glad about’, belong to the class of matrix predicates that are compatible with
the semantic condition that the clause they embed is contingent and true. They are
veridical and even factive when used with a correlate – cf. Schwabe [21], Schwabe &
Fittler [23] and Sudhoff [26].11 Predicates like merken ‘realize’, wissen ‘know’ and
hören ‘hear’, which are also factive with an es-correlate, also allow argument condi-
tionals. But does this mean that factivity is a sufficient and necessary condition for a
matrix predicate to select an argument conditional as claimed by various authors?

Factivity is not sufficient because a predicate like bedenken dass ‘consider’ is
factive with a correlate, but does not allow an argument conditional. Unlike hören
‘hear’, sich darüber freuen ‘be glad’ and akzeptieren ‘accept’, bedenken construes the
“non-reducible ob-form” [23]: [A verb (σ ∨ σ)].12 Verbs like hören ‘hear’ and ig-
norieren ‘ignore’ allow a “reducible ob-form” [23]: [(A verb dass σ) ∨ (A verb dass
σ)]. Except for zweifeln ‘doubt’, a matrix verb that allows a reducible ob-form also

10 Contingent propositions are neither tautological nor contradictory. The fact that the proposition has
to be true lead some authors, as for instance Pesetsky [14], Hinterwimmer [8] and Kaiaty [9], to
regard `̀ factivity'' as a necessary condition for licensors of argument conditionals.

11 According to Égré [3], a predicate is veridical if A predicate dass σ ⇒ σ and a predicate is factive if
A (non) predicate dass σ ⇒ σ.

12 Predicates licensing a non-reducible ob-form correspond to Groenendijk & Stokhof’s [6] question
intension embedding predicates, and predicates allowing a reducible ob-form are consistent with
Groenendijk and Stokhof 's question extension embedding predicates.
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allows an argument conditional.13 Characteristic properties of question embedding
matrix predicates are described in Schwabe & Fittler [23].

Factivity is not a necessary condition either. Factivity distinguishes a predicate like
es akzeptieren ‘accept’ or bedauern ‘regret’, which license constructions with an
argument wenn-clause, from a veridical predicate like es beweisen ‘prove’, which does
not do so. Predicates like davon hören ‘hear about’ and sich darauf stützen ‘rely on
sth.’ are not factive, but allow argument conditionals. Davon hören, which, without its
correlate, allows the reducible ob-form, licenses the “neutral ob-form” [23]. Sich da-
rauf stützen, which does not embed any ob-question, is cognitent in terms of Schwabe
& Fittler. According to them, an embedding predicate pred is cognitent if A pred σ
implies that σ follows from what A knows. But it turns out that cognitence is not
sufficient either. Sich danach richten ‘comply with’ as well as darüber nachdenken
‘cogitate’ are cognitent, but only sich danach richten licenses an argument conditional.
Both predicates differ in that sich danach richten licenses the reducible ob-form while
darüber nachdenken does not.

As for predicates licensing argument conditionals, one can now summarize:

Obviously, sentences with an argument wenn-clause like (38) and corresponding
ones with a dass-clause like (39) have the same truth values if Lea sings off-key. But,
they are not equivalent. Their truth values differ if Lea does not sing off-key.

(38) Max merkt esσ wenn  [Lea falsch singt]σ
Max realizes it if      Lea sings off-key

(39) Max merkt esσ dass  [Lea falsch singt]σ
Max realizes it     that    Lea sings off-key

(37) A predicate verb dass τ
verb dass

construction with an argumentlicenses a  wenn-clause 
with the paraphrase: If σ is contingent and true, then A is true iff  
i. verb dass is distinct from zweifeln dass 'doubt' and licenses the reduci-

ble ob-form  
 [e.g. (es) hören 'hear about', (es) ignorieren 'ignore', sich danach rich-

ten 'comply with'] or
ii. verb ProPP dass licenses without the ProPP the reducible ob-form  

[(davon) hören 'hear about', (darüber) schreiben 'write about'] or

σ

iii. verb dass does not license any ob-form and is either factive with the es-
correlate or cognitent with its ProPP 
[e.g. (es) akzeptieren 'accept', sich darüber freuen 'be glad about', sich 
darauf stützen 'rely on'].

13 Zweifeln dass σ is consistent with zweifeln dass ¬σ. Thus, zweifeln ob construes the reducible ob-
form [A zweifelt dass σ] [A zweifelt dass ¬σ], but is not related to question extensions – cf. Schwabe
& Fittler [23].
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If Lea does not sing off-key, the sentence with the dass-clause is false whereas the
sentence with the wenn-clause is still true. If one uses a sentence with a wenn-clause,
one does not commit oneself to the truth of the propositional argument. However, if the
argument is true, one has indirectly expressed that it is true.

A sentence with an argument ob-clause like (40) is also true if the embedded clause
is true.

(40) Max merkt esσ,   ob              [Lea falsch singt]σ
Max finds out  it    if/whether Lea sings off-key

 'Max finds it out if/whether Lea sings off-key.'
 (Max finds it out that Lea sing off-key) or (Max finds it out that Lea does not 

sing off-key) 

Examples (38), (39) and (40) are true if Lea sings off-key and Max finds out that
she sings off-key. Whereas (39) is false if Lea does not sing off-key, (38) and (40) are
still true in such a situation. But this does not mean that (38) and (40) are equivalent. If
Lea does not sing off-key and Max does not find out that she does not sing off-key,
sentence (38) with the argument wenn-clause is true whereas sentence (40) with the ob-
clause is false.

As to constructions like (41) exhibiting a preference predicate like vorziehen
‘prefer’, they cannot be paraphrased in the same way as a construction like (36) with a
predicate like akzeptieren ‘accept’. This becomes apparent in the faulty paraphrase
(41a), which is rendered more precisely by (41a’). Fabricius-Hansen [5], who has
observed this problem, concedes that she does not have an appropriate paraphrase for a
construction with a preference predicate.

As shown in the paraphrase (41b), the wenn-clause restricts σ to being contingent,
but not to being true. In this way, the wenn-clause is a faultless protasis for the matrix
clause.

(41) Max  zieht esσ vor wenn [Lea singt]σ
  Max prefers  it        if      Lea sings

a. * If Lea sings Max prefers that Lea sings. 
is contingent and truea'. *[  

is contingent[σ  

σ τ(σ )]
b. If Lea sings is contingent, Max prefers that Lea sings. 
b' τ(σ )]

The protasis implies that both σ and ¬ σ are possible. They are alternatives. It is
characteristic for preference predicates that their subject decides on the alternative
expressed in the protasis. So, preference predicates are only compatible with contingent
embedded propositions.

A sentence like (41) is equivalent to a corresponding construction with a dass-
clause provided contradictory and tautological propositions are ignored – cf. (42).

(42) Max zieht esσ vor dass [Lea singt]σ
Max prefers it          that    Lea sings
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It follows that the conjunction wenn ‘if’ in constructions with an argument wenn-
clause has two functions: It indicates an implication where the protasis provides the
argument of the matrix predicate. Depending on the matrix predicate, the protasis either
expresses that the argument of the matrix predicate is contingent and true or it
expresses that the argument of the matrix predicate is contingent. It follows that there
are two conjunctions wenn:

(43) a. wenntruth:   p is contingent and true q(p) 
b. wenncontingence: q is contingent p(q) 

It depends on the semantic properties of the matrix predicate whether the veridical
wenn or the contingent one is appropriate. Predicates fulfilling (37) select clauses with
wenntruth and preference predicates, that is, predicates that select contingent statements,
select clauses with wenncontingence.

4 Conclusion

Similar to Fabricius-Hansen [5], Pesetsky [14], and Hinterwimmer [8], this paper
argues that a wenn-clause in a construction with an argument wenn-clause has a double
function in that it is primarily an adverbial that provides the protasis of an implication
and that it additionally contributes the propositional argument for the matrix predicate.
Unlike Pesetsky [14] and Hinterwimmer [8], who regard the conjunctions if or when as
“instructions” for the adverbial to move to an A-bar-position in order to become the
restrictor of a quantifier, this paper suggests that the conditional conjunction wenn
encodes an implication. It encodes wo implication types, the classic type: [(σ is con-
tingent and true) ⇒ τ(σ)] and the preference type: [(σ is contingent) ⇒ τ(σ)]. The
adverbial function of the wenn-clause is indicated by the conjunction wenn and by the
syntactic position of the wenn-clause as left or right TP-adjunct. Its argument function
becomes apparent by its locally m-binding [4] a correlate in a canonical complement
position. In this position, the correlate is theta-marked by V0. Depending on the matrix
predicate the correlate is either es or ProPP. It can be non-overt, that is, pro, if it locally
m-binds a dass-clause which is a right vP-adjunct [7]. The dass-clause can be deleted if
it is locally m-bound by a wenn-clause. The deletion requires that the wenn- and dass-
clauses are coreferential and alike with respect to their information structure and that
both are identical with the exception of their complementizer. Furthermore, the dass-
and the wenn-clause must be adjacent. It has been shown that besides argument wenn-
clauses, there are complex conditionals containing an embedded clause which provides
the argument of the matrix predicate – cf. (32) and (34).

The syntactic analysis has provided answers to the questions raised in the begin-
ning: Why do pre-sentential argument conditionals allow sentential correlates, while
pre-sentential dass-clauses do not – cf. (4) to (6) and (7) to (9)? And why do post-
sentential wenn-clauses allow the non-overt correlate pro, while pre-sentential wenn-
clauses do not – cf. (10b) to (12b) and (4b) to (6b)?

The paper has shown that the classic implication type [(σ is contingent and true) ⇒
(τ(σ))] is allowed i. by predicates that license the reducible ob-form with the exception
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of zweifeln ‘doubt’ [e.g. (es/davon) hören ‘realize’, (es) ignorieren ‘ignore’, sich
danach richten ‘comply with], ii. by predicates with a ProPP that license without the
ProPP the reducible ob-form [(davon) hören ‘hear about’, (darüber) schreiben ‘write
about’] and iii. by predicates that do not license any ob-form and are either factive with
the es-correlate or cognitent with the ProPP [(es) akzeptierern ‘accept’, sich darüber
freuen ‘be glad about’].

The preference type [(σ is contingent and true) ⇒ (τ(σ))] is licensed by predicates
that are compatible only with contingent propositions (es) vorziehen ‘prefer’.
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Abstract. The hallmark property of the Russian verbal system is taken
to be the bipartite perfective/imperfective distinction in the domain of
grammatical aspect. In this paper we show that there is a substantial and
productive class of morphologically complex verbs that do not clearly
pattern as either perfective or imperfective on standard formal (dis-
tributional) tests for perfectivity versus imperfectivity. Such verbs also
pose problems for contemporary syntactic approaches to Russian com-
plex verbs. The main innovation we propose is a new positive test for
perfectivity which, along with the standard formal (distributional) tests,
allows us to provide empirical evidence for the existence of a class of
verbs that exhibit a variable grammatical aspect behavior, i.e., behave
like perfective or imperfective verbs in dependence on context. Apart
from shedding a new light on the standard tests for the aspectual mem-
bership of Russian verbs, the main empirical outcome seems to suggest
that a third–biaspectual–class of verbs which cannot be neatly aligned
with either the perfective or imperfective class must be recognized. This
immediately raises the question about its status with respect to the tra-
ditional bipartite perfective/imperfective distinction.

1 Introduction

The main goal of this paper is to provide evidence for the existence of a produc-
tive class of verbs in Russian that are morphologically complex and behave in
the same way as those verbs that are traditionally considered biaspectual. This
class of verbs poses challenges to both traditional and contemporary syntactic
accounts of Russian verbal aspect. First, they cannot be identified by means of
the standard formal (distributional) tests for determining whether a given verb
form is imperfective or perfective, because such tests are formulated as nega-
tive diagnostics for perfectivity, i.e., the possibility they exclude is that a given
verb form is perfective. Consequently, such tests fail to distinguish biaspectual
verbs from imperfective ones. Second, current syntactic approaches that make
the most explicit claims about the formal properties of Russian complex verbs
make wrong or inconsistent predictions about the aspectual membership of such
verbs.
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We suggest a new positive test for perfectivity that allows us to provide evi-
dence for a class of biaspectual verbs: namely, this class satisfies our new positive
test for perfectivity, which true imperfectives fail, while at the same time, it fails
to be aligned with true perfectives, according to the traditional negative tests
for perfectivity. If it is correct that there is a productive class of biaspectual
verbs with formal (distributional) and semantic properties that clearly set it
apart from true perfectives and true imperfectives, then this would raise the
question about its status with respect to the traditional binary aspectual oppo-
sition between perfectivity and imperfectivity, and whether the possibility of a
tripartite division should be considered.

The paper is structured as follows. Section 2 provides the main data. Section 3
focuses on prefixed biaspectual verbs. We first provide a survey of the approaches
to Russian prefixation and then show that none of the existing accounts is able
to capture the existence of prefixed biaspectual verbs. In Sect. 4.1 we discuss the
existing tests for verbal aspect and show that none of them is suitable for dis-
tinguishing between biaspectual and imperfective verbs. Section 4.2 is dedicated
to the new test that is positive for perfectivity. Section 5 is a discussion of the
consequences of the integration of the productive group of biaspectual verbs into
the theory of Russian aspect and prefixation.

2 Main Data: Biaspectual Verbs

Biaspectual verbs have received constant attention in the studies of Russian ver-
bal and aspectual systems (see, e.g., Isačenko 1960; Avilova 1968; Skott 1979;
Gladney 1982; Čertkova 1998; Jászay 1999; Anderson 2002; Timberlake 2004;
Janda 2007). Two classes are commonly distinguished: a relatively small group
of verbs with historically Slavic roots, such as kaznit’PF/IPF ‘to execute’ and
foreign borrowings ending in ovat’, such as reformirovat’PF/IPF ‘to reform’.
According to Čertkova and Čang 1998, the second group constitutes more than
90 % of the biaspectual verbs (their statistical study uses the data from the
Ožegov 1990, dictionary) and according to Anderson 2002, – about 95 % (data
taken from Zaliznjak 1977). All of the studies listed above are concerned exclu-
sively with nonprefixed biaspectual verbs listed in the dictionaries.

However, there are also prefixed (and suffixed) biaspectual verbs, as is clearly
evident from corpus-based studies (see e.g., Borik and Janssen 2012). Such verbs
constitute an open class of lexical items with subgroups that follow productive
patterns. Let us examine one such group: namely, the biaspectual verbs that
are formed with the formant -iva-/-yva- and two or more prefixes, where the
outermost is the completive do-1:

1 In this scheme all the components are crucial: those verbs that contain do- as the
outermost prefix, but do not contain the imperfective suffix, are clearly perfective
and those verbs where the only prefix is do- and the imperfective suffix is present
are imperfective.
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(1) doCOMP -PREF+-ROOT-yva-t’2

Some illustrative examples (among many others) are:

(2) a. do-pere-za-pis-yva-t’ ‘to finish writing down again’,
b. do-pere-stra-iva-t’ ‘to finish rebuilding’,
c. do-vy-š-iva-t’ ‘to finish embroidering’,
d. do-za-pis-yva-t’ ‘to finish writing down’,
e. do-pere-pis-yva-t’ ‘to finish rewriting/copying’,
f. do-za-kaz-yva-t’ ‘to finish ordering’.

Depending on the context, these verbs are assigned to either the imperfective
aspect (examples (3-a) and (4-a)) or the perfective aspect (examples (3-b) and
(4-b)).

(3) a. V
in

dannyj
given

moment
moment

doperezapisyvaju
do.pere.za.write.imp.1sg

ešče
also

2
2

pesni.
songs

‘I’m currently finishing rerecording two more songs.’
b. Doperevela

do.translate.pst.sg.f
“Talisman”
“Talisman”

Šandmaulej
Šandmaul.gen

i
and

doperezapisyvala
do.pere.za.write.imp.pst.f.sg

sobstvennye
own

pesni.
songs.

‘I finished translating “Talisman” by the group “Šandmaul” and fin-
ished rerecording my own songs.’3

(4) a. Ja
I

skol’ko
how.much

ni
ever

doperestraival,
do.pere.build.pst.sg.m,

ljudi
people

v
in

itoge
total

tratili
spent

bol’̌se, čem na novuyu postrojku.
more then on new bulding.
‘Every time I was rebuilding something, in the end the clients spent
more than they would have paid for the new building.’

b. Vot
here

tol’ko
only

traktir
tavern

doperestraivaju,
do.pere.build.imp.pres.1sg,

proekt
project

sdam,
hand.in.pres.1sg,

diplom
diploma

poluču...
receive.pres.1sg

‘I will just first finish rebuilding the tavern, then hand in the project
and receive the diploma...’

2 The superscripts ‘IPF’ and ‘PF’ on a verb stand for the imperfective and perfective
aspect. The following abbreviations are used in the glosses: NOM = nominative,
GEN = genitive, DAT = dative, ACC = accusative, SG = singular, PL = plural,
F = feminine, M = masculine, N = neuter, PRES = present tense, PAST = past
tense, INCEP = inceptive, COMP = completive, IMP = imperfective suffix, PREF =
lexical prefix.

3 The past tense verbal form itself does not specify the person, only gender and num-
ber, so the information about the person comes from the context.
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In (3-a) the verb doperezapisyvaju ‘I am finishing rewriting’ behaves like an
imperfective verb, because it has a progressive interpretation triggered by the
adverbial v dannyj moment ‘currently’ (see also below), while doperezapisyvala
‘I finished rerecording’ in (3-b) behaves like a perfective verb, because of the
conjunction with the perfective verb doperevela ‘finished translating’ (see the
more detailed explanation in Sect. 4.2).

In (4-a) the verb doperestraival ‘was finishing rebuilding’ is used as an imper-
fective verb with an iterative meaning and in (4-b) the same verb doperestraivaju
‘I will finish rebuilding’ can only be assigned the perfective aspect because it has
future reference in the nonpast tense.

The variability of the perfective and imperfective uses of biaspectual verbs is
a matter of some disagreement, not all the speakers can access both the perfective
and imperfective variant. For instance, according to some speakers, dozapisyvat’
‘to be finishing/finish writing down’ cannot be used as a perfective verb, i.e.,
it is not biaspectual at all. However, such speakers would also agree that the
structurally similar verb dovyšivat’ ‘to be finishing/finish embroidering’ can,
indeed, be used as a perfective verb, as in (5).

(5) Planiruyu
Plan.pres.1sg

pristupit’
start.inf

k
to

rabote
work

čerez
over

dve
two

nedeli,
weeks,

kak
as

tol’ko
only

dovyšivayu
do.vy.sew.imp.pres.1sg

“Lesnuju
“Forest

zarju”.
dawn”

‘I plan to start the work in two weeks’ time; as soon as I will have finished
embroidering “Dawn in the forest”.’

3 Russian Prefixation System

3.1 An Overview of the Existing Syntactic Approaches

As is well-known, the Russian grammatical aspect provides formidable challenges
to any theory of aspect. One of the main reasons for this is the system of ver-
bal prefixation, which is highly idiosyncratic. The difficulties start with the fact
that even standard Russian grammars do not agree on the number of verbal
prefixes and their meanings. Traditionally, the number of prefixes is claimed to
be 18 (Isačenko 1960; 1968; Russian Grammar 1952), but Krongauz (1998, pp.
131–141) lists 19, proposing to split o-/ob- in two separate entries and Barykina
et al. (1989) gives 21 prefixes. The largest number of prefixes is listed in Švedova
(1982), who claims that the total number is 28. Her list includes 23 prefixes
that she takes to be productive: v-/vo-, vz-/vzo-, voz-/vozo-, vy-, dis- (produc-
tive in scientific speech), do-, za-, iz-/izo-, na-, nad-/nado-, nedo-, o-, ob-/obo-,
ot-/oto-, pere-, po-, pod-/podo-, pred-/predo-, pri-, pro-, raz-/razo-, s-/so1-. The
other five are nonproductive (niz- and pre-) or loaned and productive only in
literary language (re-, de- and so2-). In her list of the productive prefixes, the
median number of their different uses/senses is 5.

Traditional, descriptive grammars (e.g., Russian Grammar 1952; Ušakov 1940;
Švedova 1982) provide a number of valuable intuitive and descriptive observa-
tions, but they do not offer any systematic theory of prefixation. It is crucial
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to note that they either do not mention the possibility of prefix stacking (as
illustrated by examples in (2)) at all (see e.g., Švedova 1982) or if they do, they
tend to list certain prefix combinations without motivating why exactly such
combinations should occur4.

One of the possible reasons for this omission is the widespread view that
the main function of Russian (and, in general, Slavic) prefixes is to be added
to imperfective simplex verbs and form perfective verbs. With certain restric-
tions, the imperfective suffix is added to prefixed perfective stems and derives
secondary imperfective verbs. While this captures two of the most common for-
mation processes of complex verbs, it must also be acknowledged that there
are others that are traditionally barely mentioned. In particular, the stacking of
prefixes has escaped any systematic treatment.

Filip (2000, 2003) attempts at providing systematic semantic motivation for
at least some of the cases of stacked prefixes (based on Czech examples), and in
this connection calls into question the common view of Slavic prefixes, according
to which prefixes are only attached to imperfective verbs and form perfective
verbs, showing that prefixes can also be attached directly to perfective verbs,
both basic and prefixed.

Another important strand of research that addresses the phenomenon of
Russian verbal prefixation, is syntactically based and has been developed in the
past ten years or so. It has its origins in the long-standing tradition of distin-
guishing between two types of prefixes (Forsyth 1970; Isačenko 1960; Townsend
1975): lexical prefixes (also called internal prefixes) vs. those prefixes that derive
Aktionsart verbs (later in the literature called superlexical or external).

The division of the prefixes into lexical/internal and superlexical/external
is a key component in contemporary (mostly syntactically-based) approaches to
Russian prefixation: Babko-Malaya (1999); Borik (2002); Gehrke (2004);
Ramchand (2004); Schoorlemmer (1995); Romanova (2004, 2006); Svenonius
(2004a, 2004b); Di Sciullo and Slabakova (2005). Following Svenonius (2004b,
p. 229) who builds on the discussion of Russian in Schoorlemmer (1995), these
two groups are distinguished according to the following diagnostics: superlexi-
cal prefixes (i) do not allow the formation of secondary imperfectives (invalid
in Bulgarian), (ii) can occasionally stack outside lexical prefixes, never inside,
(iii) select for imperfective stems, (iv) attach to the non-directed form of a motion
verb, (v) have systematic, temporal or quantizing meanings, rather than spatial
or resultative ones.

Babko-Malaya (1999) was the first to propose that the internal structure of
complex verbs is represented by means of syntactic trees and lexical and super-
lexical prefixes occupy different syntactic positions in it. More precisely, lexical
prefixes are adjoined to a lexical head, while superlexical prefixes are adjoined
instead to a functional category. She predicts that “lexical prefixes modify the
meaning of the verb, whereas superlexical prefixes are modifiers of verbal phrases

4 For example, in Russian Grammar (1952) it is only stated that na-, pere-, pod-, pri-
and po- are productive as second verbal prefixes and that po- can also be used as a
third prefix.
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or whole sentences” (Babko-Malaya 1999, p. 76). The (im)perfective aspect of
a given complex verb is then determined by the properties of the highest affix
in a structure. In what follows, let us have a look at a couple of proposals that
follow this research program.

Romanova (2004) proposes the structure for Russian verbs that is represented
in Fig. 1. Romanova (2004, p. 272) assumes “the presence of AspP in between
VP and vP,” that “is a possible place for merge of the secondary imperfective
suffix or purely perfectivizing prefixes”, and that lexical prefixes are located
below AspP, while “superlexical prefixes originate – or at least end up – above
the AspP domain” (p. 271). Throughout the paper, a lot of questions regarding
the behavior of prefixes are posed and the author arrives at the conclusion that
“there is no uniform distribution of all superlexicals”.

Fig. 1. Verbal structure according to Romanova (2004, p. 272)

While Babko-Malaya (1999) and Schoorlemmer (1995), among others, assume
that superlexical prefixes form a homogeneous class, Svenonius (2004b) argues
that there is a tripartite division among superlexical prefixes based on their
ability to form secondary imperfectives.

According to Svenonius (2004b), certain superlexical prefixes (za- with incep-
tive meaning, ot- with terminative meaning and pere- with distributive mean-
ing5) may be attached higher than the structural position of the imperfective
5 Pere- has a variety of meanings (e.g. Švedova 1982 distinguishes between 10 different

meanings) including spatial, temporal, comparative, iterative, crossing the boundary,
distributive and pere- of excess.
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suffix, which is Asp, the head of AspP. Such prefixes disallow the formation of
secondary imperfectives, (e.g., za- in its inceptive use, as in Fig. 2). That is, the
imperfective suffix cannot be directly attached to an imperfective stem and the
result is an invalid structure (see Fig. 2).

There are also mixed cases like cumulative na-, excessive pere-, and attenua-
tive po-. The normal point of attachment of such prefixes is outside the scope of
the secondary imperfective, however under certain exceptional conditions they
allow a lower point of attachment (p. 231).

Svenonius’ main generalizations can be stated as follows (see also the sum-
mary in Svenonius 2012):

(i) lexical prefixes originate inside vP;
(ii) superlexical prefixes originate outside vP;
(iii) lexical and superlexical prefixes that (according to him) disallow secondary

imperfectivization are separated by Asp in the syntactic structure;
(iv) exceptional superlexical prefixes are merged (sometimes) outside vP, but

below the Asp.

Fig. 2. Structural positions of different superlexical prefixes according to Svenonius
(2004b, p. 231)

Ramchand (2004) proposes the following ‘bottom-up’ order:

(i) lexical prefixes;
(ii) aspectual head that may contain either the imperfective suffix or a super-

lexical prefix;
(iii) a DP projection for superlexical distributional prefixes (she cites pere- and

po-).

While the motivation for this hierarchical order is not entirely clear, it would
seem to derive from the following assumptions made by Ramchand (2004):

1. lexical prefixes appear low in the syntactic structure, due to which a “presup-
positional structure to the aspectual head” is introduced “to the effect that
it creates a definite rather than an indefinite time moment in Asp” (p. 349);
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2. most superlexical prefixes are in Asp and “impose a specific reference time
on the relation between event and temporal anchoring” (p. 351);

3. a position that superlexical prefixes that are distributional (pere- and distrib-
utive po-) occupy is higher in the hierarchy than the Asp head (p. 352); such
prefixes can be attached directly to the root or to the secondary imperfective
verb.

The fundamental two-way distinction is of key importance for Romanova (2004);
Svenonius (2004b); Ramchand (2004) despite the fact that they split the class
of superlexicals into subclasses and acknowledge that “there is no uniform dis-
tribution of all superlexicals” (Romanova 2004, p. 271).

In further developments we see a shift of focus from the bipartite distinction
to the split of the whole class of prefixes into more than just two main classes.
A good example is the work by Tatevosov (2007), who proposes a three-way clas-
sification of verbal prefixes, arguing for the existence of intermediate prefixes, in
addition to lexical and superlexical ones. The group of the intermediate prefixes
is constituted by completive do- and repetitive pere-.

This division is motivated by examples like (6-a) and (6-b). For the analysis
that assumes the two-way distinctions, the verbs in (6-a) and (6-b) have identical
internal structure: a superlexical prefix, a lexical prefix, a stem and the imperfec-
tive suffix. Nevertheless, these verbs are assigned to a different aspect: nazapisy-
vat’ ‘to write down a lot’ is perfective while perezapisyvat’ ‘to be rewriting/to
rewrite’ is imperfective. For Tatevosov (2007), there is a structural difference
between the two verbs, because pere- is classified as an intermediate prefix and
is positioned between lexical prefixes and the imperfective suffix. As a result,
the verb in (6-b) gets assigned the imperfective aspect. At the same time, na-
remains a superlexical prefix and thus the verb nazapisyvat’ ‘to write down a
lot’ gets assigned the perfective aspect.

(6) a. nazapisyvat’PF

na.za.write.imp.inf
‘to write down a lot’

b. perezapisyvat’IPF

pere.za.write.imp.inf
‘to be rewriting/to rewrite’

A more elaborate classification is proposed in Tatevosov (2009) that is mainly
dedicated to the problem of prefix stacking. However, in order to account for
the relevant stacking constraints, the proposal amounts to a list of postulations
about the position of prefixes in the syntactic tree. Tatevosov (2009) abandons
the previous tripartite distinction among all the prefixes proposed in Tatevosov
(2007) and instead argues for a classical division of all the prefixes into lexical
and superlexical ones, enriching it with a three-way classification of superlex-
ical prefixes in order to account for the relevant facts: left periphery prefixes,
selectionally limited prefixes and positionally limited prefixes.

The group of left periphery prefixes is constituted by only one prefix: dis-
tributional po- (pobrosat’ ‘to spend some time throwing’). It occupies the left
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periphery of the verbal structure. Selectionally limited prefixes can be added only
to a formally imperfective verb. The group includes delimitative po- (posidet’ ‘to
sit for some time’), cumulative na- (navarit’ ‘to cook a considerable amount of
something’), distributional pere- (perelovit’ X ‘to catch all of X’) and inchoative
za- (zabegat’ ‘to start running about’).

The last group of positionally limited prefixes is constituted by the comple-
tive do- (dodelat’ ‘to finish doing’), repetitive pere- (perepisat’ ‘to rewrite’) and
attenuative pod - (podustat’ ‘to become a little bit tired’). These prefixes, accord-
ing to Tatevosov (2009), can be added only before the secondary imperfective
suffix -yva-/-iva- and end up in the same structural position as intermediate
prefixes in Tatevosov (2007), the group being extended by one prefix.

The net advantage of Tatevosov (2009) over Tatevosov (2007) seems to be
that only the former can motivate the difference between (7-a) and (7-b), but
it also requires the stipulation that distributive po- forms a singleton group.
On Tatevosov’s (2009) account, distributive po- must be situated on the left
periphery of the verb, thus there can be no derivation for (7-b).

(7) a. ponazapisyvat’
distr.cum.za.write.imp.inf
‘to write down a lot one after another’

b. *napozapisyvat’
cum.distr.za.write.imp.inf

3.2 Summary and Criticism of the Existing Syntactic Approaches:
Predictions and Counterexamples

Although the approaches summarized above vary in many details, they all share
the idea that prefixes fall into distinct groups characterized by different syntactic
properties from which their semantic behavior is assumed to follow: superlexical
prefixes have transparent meaning and behave compositionally, while the result
of the combinations of verbal stems with lexical prefixes is lexicalized.

One problem is that the class of superlexical prefixes is not clearly delimited.
There are substantial differences among the researchers on which prefixes belong
to the superlexical class. The longest list can be found in Svenonius (2004a, p. 195,
(28)): inceptive za-, terminative ot-, completive do- and iz -, perdurative pro-, deli-
mitative, attenuative anddistributive po-, repetitive, excessive and repetitive pere-
and cumulative and saturative na-. While the list by Romanova (2004) is shorter,
it also includes attenuative pod - and pri -.

As far as determining the aspect of a complex verb is concerned, what implic-
itly emerges from Ramchand (2004); Romanova (2004); Svenonius (2004b), can
be summarized by the schema in (8), given in Borer (2013):

(8) a. V → imperfective6

b. Prefix + V → perfective
c. V + Semelfactive → perfective

6 Plus a list of biaspectual and perfective underived verbs.
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d. Prefix + V + S-imperfective/Hab → imperfective
e. Prefix + (Prefix + V + S-imperfective/Hab) → perfective

Taking into account also the proposals by Tatevosov (2007, 2009), the schema
in (8) may be completed with the following rule (f), where (f) must be applied
instead of (e) in case of intermediate/positionally limited prefixes (completive
do-, repetitive pere-, attenuative pod-).

f. (PosLim/ItmPrefix + Prefix* + V) + S-imperfective/Hab →
imperfective

Examples (9-a)-(9-f) illustrate the application of the corresponding rules (8-a)-
(8-f).

(9) a. pisat’IPF

write.inf
‘to write’

b. zapisat’PF

za.write.inf
‘to write down’

c. prygnut’PF

jump.semelf.inf
‘to jump once’

d. zapisyvat’IPF

za.write.imp.inf
‘to be writing down/to write down’

e. nazapisyvat’PF

cum.za.write.imp.inf
‘to write down a lot’

f. perezapisyvat’IPF

iter.za.write.imp.inf
‘to be rewriting/to rewrite’

From the schema in (8) it follows that all the existing syntactic approaches
implicitly postulate that there is exactly one syntactic structure allowable for
any given single verb token with a given interpretation. The structural position
for each prefix use in the syntactic structure is fixed. To illustrate this point,
which is key for our purposes, let us take as an example the biaspectual verb
dozapisyvat’ ‘to finish writing/to be finishing writing’ that follows the pattern
in (1). Given the syntactic assumptions, summarized in the schema (8), it can
be shown that the biaspectual nature of the verb cannot be predicted.

The verb in question contains the following derivational morphemes: the
superlexical prefix do- with the completive meaning (see, e.g., Svenonius 2004a),
the lexical prefix za- with non-compositional semantic contribution, the stem
-pis- and the imperfective suffix -yva-.

Following Svenonius (2004b) and rule (e) in schema (8), we obtain the tree
in Fig. 3 for the verb dozapisyvat’. The completive prefix do- scopes over the
imperfective suffix, so the verb must be assigned the perfective aspect. Note that
Svenonius (2004b) does not explicitely discuss the characteristics of the prefix
do-. However, in Svenonius (2004a) this prefix is assigned to the superlexical
class and in Svenonius (2004b) general statements about the properties of the
superlexical prefixes are made. In sum, this allows us to conclude that the verb
dozapisyvat’ should be analyzed in the way illustrated in Fig. 3. Ramchand (2004,
p. 357) makes the same predictions.
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AspP

PP

do-
compl

Asp

Asp

va-
impf

vP

v VP

V

pis-
‘throw’

PP

za-

Fig. 3. Tree for dozapisyvat’ following
Svenonius (2004b)

AspP

-va- ItmP

do- vP

za-pis

Fig. 4. Tree for dozapisyvat’ following
Tatevosov (2007)

Contrary to both Svenonius (2004b) and Ramchand (2004), Tatevosov (2007)
arrives at a different aspectual classification of the same verb. This is because
according to Tatevosov (2007), do- occupies a special projection for intermediate
prefixes so that the resultant syntactic structure is as in Fig. 4. As we see, the
imperfective suffix is in the highest position and the aspect of the whole verb
must be imperfective. The analysis in Tatevosov (2009) amounts to the same
prediction.

As is evident from the examples above, each theory predicts exactly one
syntactic structure for the verb dozapisyvat’, as well as for any other verb. This
holds true even for the most detailed account by Tatevosov (2009). Here the
existence of an exceptional group of superlexical prefix uses is postulated. This
group is the group of selectionally limited prefixes and includes delimitative po-,
cumulative na-, distibutional pere- and inchoative za-. These prefixes, according
to Tatevosov (2009), can assume a position “above” or “below” the imperfective
suffix (which is not allowed in other approaches). However, this fact does not
affect the overall prediction that there is a unique syntactic structure assigned
to each given complex verb due to the selectional restriction.

The impossibility of having syntactic ambiguity for a given verb with a fixed
interpretation should not be confused with the situation in which the verb has
two meanings, i.e., the case of a genuine lexical ambiguity. In such case, all the
approaches discussed predict for each meaning to be associated with a different
syntactic tree.

In sum, the notion of a structural position is helpful in motivating at least
certain facts about the formation of complex verbs (see example (9)). For this
reason syntactic approaches were a necessary step in the process of understand-
ing the system of Russian prefixation. However, the problematic part of these
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approaches is that they, as we have shown, exclude the existence of biaspectual
affixed verbs. The reason for this is that the structural assumptions that are
postulated enforce a given complex verb to be unambiguously assigned to either
the perfective or the imperfective aspect category independently of any other
factors7.

4 Identifying Biaspectual Verbs

4.1 Standard Diagnostics for Distinguishing Between
Perfectives and Imperfectives

In Russian, the tests for determining the aspectual membership of a given verb
form typically aim at excluding the possibility that a given verb form is per-
fective. Hence, they focus on the negative formal properties of perfective verbs.
One good example of such a test set is given by Schoorlemmer (1995):

(10) (i) perfective verbs do not get an “ongoing” interpretation in nonpast
tense;

(ii) perfective verbs cannot be used as complements of phasal verbs
(e.g., načat’ ‘to begin’);

(iii) perfective verbs cannot form present participles.

Notice that all of these tests are negative in so far as they specify the prop-
erties that perfectives fail to have. While these tests delimit perfective verbs,
they cannot distinguish between imperfective and biaspectual verbs. Based on
the previous aspect studies, there seem to be two possible candidate tests for
perfectivity: one relies on past passive participle formation and the other makes
use of the properties of the narrative sequence. We will ultimately show that
neither of them works.

According to the first test, past passive participles (PPPs) can only be formed
from perfective verbs. For example, in the aspectual pair in (11) only the perfec-
tive member sanctions the derivation of a PPP (12-b), but not the imperfective
one (12-a).

(11) gruzit’IPF → zagruzit’PF

(12) a. gruzit’IPF
� *gružennyj

b. zagruzit’PF → zagružennyj

7 One exception is a modification of Tatevosov (2009) proposed in Tatevosov (2013)
that seems to implicitly react on problematic examples first mentioned in the work
by Zinova (2012). Tatevosov (2013) proposes that the completive prefix do- (for a
certain group of Russian speakers) does not have any restrictions on its attachment.
If, however, such modification is adopted without further restrictions, the class of
biaspectual verbs turns out to be too large. This problem seems to be solvable,
although no solution is offered by the author. For a bit more details on this point
and the data that remains problematic after such modification see Zinova and Filip
(2014). Another conceptual problem is that the class of superlexical prefixes then
contains 4 subclasses, two of which are inhabited by only one prefix.
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However, matters are not as simple as that. As was pointed out by Schoorlemmer
(1995), this test is applicable only to transitive and aspectually paired verbs.
Specifically, according to Schoorlemmer, no perfective verbs with superlexical
prefixes form aspectual pairs, which makes the test of little help for our purposes.
Second, Romanova (2006) provides a number of counterexamples of past passive
participles derived from imperfective verbs, among others (13).

(13) ...kolonna
column.nom

avtomašin,
cars.pl.nom

gružennyx
loadedIPF .pl.gen

bumažnymi
paper.pl.instr

paketami...
bags.instr

‘...a string of cars, loaded with paper bags...’

This suffices to show that the PPP formation test is neither reliable nor general
enough.

The second possible positive test is connected to the phenomenon of aspec-
tual pairs and to the contribution of the verbal aspect to the narrative sequence.
Both are evoked in connection with what is referred to as the ‘Maslov crite-
rion’ that first appears in the following formulation: “Pri perevode povestvo-
vanija iz ploskosti prošedšego vremeni v ploskost’ istoričeskogo nastojaščego vse
glagoly kak SV, tak i NSV, okazyvajutsja uravnennymi v formax nastojaščego
vremeni NSV” [When the narrative is transformed from the past into the his-
torical present, all the verbs, both perfective and imperfective, result in forms
of imperfective verbs in present tense] (Maslov 2004, pp. 76–77). However, the
specific reference to Maslov’s work is typically not given when the criterion is
applied. We cite Mikaelian et al. (2007) as one of the clearest formulations found
in the literature. The ‘Maslov criterion’ is formulated as follows in Mikaeljan
et al. (Mikaelian et al. (2007), p. 1):

“A perfective and an imperfective verb can be considered an aspectual pair
if and only if the imperfective verb can be substituted for the perfective verb
in situations (such as descriptions of reiterated events or narration in historical
present) where the latter is not allowed.”

Mikaelian et al. (2007) illustrate the above with the following contrast:

(14) a. PrǐselPF ,
Come.past.sg.m,

uvidelPF ,
see.pst.sg.m,

pobedilPF

conquer.pst.sg.m
‘I came, I saw, I conquered’

b. PrixožuIPF ,
Come.pres.1sg,

vižuIPF ,
see.pres.1sg,

pobeždajuIPF

conquer.pres.1sg
‘I come, I see, I conquer’

The sentence in (14-a) describes a sequence of events in the past, suggesting that
each event was completed before the next started. Now, if the speaker wants to
represent the same state of affairs in the historical present or as a habitual
situation (their “reiterated event”), due to independently motivated constraints
on the Russian aspectual system, only the corresponding8 imperfective verbs can
be used, as in (14-b).

8 ‘Corresponding’ is understood as the imperfective verb that constitutes the aspectual
pair with the original perfective verb.
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It is plausible to approach biaspectual verbs by considering them as a kind
of a covert aspectual pair and apply the ‘Maslov criterion’ in order to find them.
One of the verbs that are often cited as paradigm examples of native biaspectual
verbs is kaznit’ ‘to execute’. If the verbs in (15-a) and (15-b) can be thought of
as constituting an aspectual pair, then the verb kaznit’ in two different aspects
in (15-c) might be thought of along the same lines, but of course in (15-c) the
alleged members of the aspectual pair just happen to be not phonologically
differentiated.

(15) a. pisat’IPF – napisat’PF

b. zapisat’IPF – zapisyvat’PF

c. kaznit’IPF – kaznit’PF

Applying the test to kaznit’, one can see that it can be used in the narrative
sequence, which seems to suggest that it behaves like a perfective verb (16-a).
The same verb can be used in the historical present or the habitual situation
context, strongly suggesting that in (16-b) kaznit’ behaves like an imperfective
verb.

(16) a. PrǐselPF ,
Come.pst.sg.m,

uvidelPF ,
see.pst.sg.m,

pobedilPF ,
conquer.pst.sg.m,

kaznilPF

execute.pst.sg.m
vragov.
enemies
‘I came, I saw, I conquered, I executed the enemies.’

b. PrixožuIPF ,
Come.pres.1sg,

vižuIPF ,
see.pres.1sg,

pobeždajuIPF ,
conquer.pres.1sg,

kaznjuIPF

execute.pres.1sg
vragov.
enemies
‘I come, I see, I conquer, I execute the enemies.’

This would seem to be in compliance with the ‘Maslov criterion’, as formulated
by Mikaelian et al. (2007). Therefore, (16) seems to indicate that biaspectual
verbs like kaznit’ could be treated as covert aspectual pairs: in (16-a) the verb
is perfective, while in (16-b) it is imperfective.

However, in the same contexts (narrative sequence and historical present/
habitual situation) it is also possible to use imperfective verbs like dumat’ ‘to
think’, as we see in (17).

(17) a. PrǐselPF ,
come.pst.sg.m,

uvidelPF ,
see.pst.sg.m,

pobedilPF ,
conquer.pst.sg.m,

dumalIPF o
think.pst.sg.m about

buduščem.
future
‘I came, I saw, I conquered, I thought about the future.’

b. PrixožuIPF ,
come.pres.1sg,

vižuIPF ,
see.pres.1sg,

pobeždajuIPF ,
conquer.pres.1sg,

dumajuIPF o
execute.pres.1sg about

buduščem.
future
‘I come, I see, I conquer, I think about the future.’



324 Y. Zinova and H. Filip

(1)�perfective (3)�biaspectual (2)�imperfective

Fig. 5. Aspectual classes

This shows that such contexts cannot be used as diagnostics for perfectivity
and imperfectivity. The ‘Maslov criterion’ requires a perfective verb as an input
condition, so it is also negative for perfectivity and does not allow to distinguish
between biaspectual and imperfective verbs. In (16) the same verb is used in both
sentences due to its biaspectual nature. At the same time the possibility to use
the same verb in both sentences in (17) is explained by the imperfective aspect of
dumal ‘thought’ in the first sentence. Moreover, there are other problems related
to the application of the ‘Maslov criterion’, which we cannot address given space
limitations9.

The key point to be made here and one that has not yet been emphasized
enough in the research on Russian aspect, is that there is no positive test for
perfectivity. Figure 5 schematically represents the aspectual classes of Russian
verbs. The standard tests are negative for perfectivity, as illustrated by (10).
They merely exclude the possibility that a given verb form is a member of Set 1.
To separate the subset of biaspectual verbs (Set 3) from true imperfective verbs
(Set 2), we need a positive test for perfectivity (Set 1). In the next section we
will do just that and propose a new positive method of testing if a given verb is
perfective. In combination with the standard tests we can then identify the class
of the biaspectual verbs.

4.2 New Positive Test for Perfectivity: Narration Relation

The new positive test for perfectivity capitalizes on the notion of the Narration
relation, defined as follows by Lascarides and Asher (1993):

Narration(α, β): The event described in β is a consequence of (but not strictly
speaking caused by) the event described in α. If Narration (α, β) holds, and α
and β describe eventualities e1 and e2 respectively, then e1 occurs before e2.

The Narration relation can be illustrated by (18):

(18) Max woke up. He opened the window.

In English, it is natural to use telic verb phrases in non-progressive tense in
the Narration relation. A parallel Russian example (19) contains two perfective
9 Mikaeljan et al. (2007, p. 2) write that “rather than a tool for establishing aspectual

pairs, the Maslov criterion should be taken as a definition and raison d’être of the
aspectual correlation.”
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verbs. In observing that the main line of a narrative is constituted by sequences
of perfective verb forms, which move narrative time forward, we draw on well-
known insights in the vast literature on aspect and discourse structure (for
Russian, see in particular Padučeva 1996; Padučeva 2004 and elsewhere).

(19) Maksim
Maksim

prosnulsjaPF .
woke.up.pst.m.refl

On
he

otkrylPF

open.pst.m
okno.
window.acc

Maksim woke up. He opened the window.

The property that is crucial for us is that if the Narration relation holds and the
second verb is perfective, the aspect of the first verb must be perfective as well.
(20) demonstrates that the combination of an imperfective and a perfective verb
is uninterpretable. Under the most normal assumptions about how situations
in the world take place, people do not open the windows while sleeping nor is
the event of opening a window normally interpreted as result or a continuation
of the waking up event. Given that, the only possible relation between the two
events is Narration.

(20) ??Maksim
??Maksim

prosypalsjaIPF .
woke.up.imp.pst.m.refl

On
he

otkrylPF

open.pst.m
okno.
window.acc

??Maksim was waking up. He opened the window.

Table 1. Verbal aspect and the Narration relation

Verbal combination Acceptance judgment

Perfective verb i ‘and’ perfective verb Ok

Imperfective verb i ‘and’ perfective verb ??

Biaspectual verb i ‘and’ perfective verb Ok

The idea of the test is summarized in Table 1. We propose to use sentences
like (21) and (22), where the second verb is perfective such that the Narration
relation is the only possible discourse relation between the events, described by
the two clauses (see more details below). In such cases, the aspect of the first
verb must be perfective, as well. Example (21) is in the non-past, whereas (22) –
in the past tense. This shows that tense is not relevant for our purposes. Note
that this is not to deny that the Narration Relation may also hold in sequences
with imperfective verbs only, as in (23).

(21) a. Ja
I

s”emPF

s.eat.pres.1sg
zavtrak
breakfast

i
and

pojduPF

pref.go.pres.1sg
na
on

rabotu.
work

‘I will finish my breakfast and go to work.’
b. ??Ja

??I
emIPF

eat.pres.1sg
zavtrak
breakfast

i
and

pojduPF

pref.go.pres.1sg
na
to

rabotu.
work

(22) a. Ja
I

s”elPF

pref.eat.pst.sg.m
zavtrak
breakfast

i
and

pošelPF

pref.go.pres.sg.m
na
on

rabotu.
work
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‘I finished my breakfast and went to work.’
b. ??Ja

??I
elIPF

eat.pst.sg.m
zavtrak
breakfast

i
and

pošelPF

pref.go.pst.sg.m
na
to

rabotu.
work

(23) Uže
Already

8:00.
8:00.

Ja
I

emIPF

eat.pres.1sg
zavtrak
breakfast

i
and

iduIPF

go.pres.1sg
na
to

rabotu.
work

It is already 8:00. I eat the breakfast and go to work.

Examples (21-a) and (22-a) illustrate the first line of the table, (21-b) and
(22-b) – the second line of the table. (21-b) and (22-b) are not interpretable,
because neither the Narration nor any other coordinating relation, e.g., a Back-
ground relation, can be construed.

The examples in (24) illustrate the third line of the table above which is
the key to the case of biaspectual verbs. In a given context, kaznit’ ‘to execute’
can behave either as a perfective or an imperfective verb. Given that in the
test context imperfective verbs are odd, biaspectual verbs pattern together with
perfective verbs. Thus, the proposed test context allows to distinguish between
biaspectual and imperfective verbs.

(24) a. Palač
Hangman

kaznit
execute.pres.3sg

prestupnika
criminal

i
and

pojdëtPF

po.go.pres.3sg
domoj.
home

‘The hangman will execute the criminal and will go home.’
b. Palač

Hangman
kaznil
execute.pst.m

prestupnika
criminal

i
and

pošelPF

po.go.pst.m
domoj.
home

‘The hangman executed the criminal and went home.’

Now that we have explained the basic workings of the test, let us address the
precise conditions under which it works as a positive test for perfectivity. To
enforce the Narration relation, the crucial conditions are required to be met.

1. The main lexical verb in the second clause must have a temporal extent.
2. The event denoted by the main lexical verb in the second clause must not be

caused or considered a continuation of the event denoted by the main lexical
verb in the first clause.

3. The clauses must be conjoined using plain conjunction i ‘and’ without any
temporal or modal (epistemic) adverbial.

The conditions above reveal the workings of the test: when the two verbs denote
such events that all the other coordinating relations such as Background or Cause
are excluded (conditions 1 and 2), i ‘and’ (condition 3) can only indicate a Narra-
tion relation between the two clauses (as it is a marker of a coordinating relation
and other coordinating relations are excluded), if it is acceptable; however, if a
Narration relation between the two clauses cannot be established, the discourse
is infelicitous, as in (21-b) and (22-b)).

The reason for the first condition is that verbs denoting punctual events could
be construed as describing events that are temporally located within the time
span of the first event. In such case, it is not the Narration (but the Background)
relation that holds between the two clauses and thus the rule expressed in the
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last line of the table above (Table 1) is not applicable, as illustrated by (25).
This condition is relevant if the test is applied in the past tense.

(25) Ona
She

igralaIPF

play.pst.sg.f
v
in

futbol
football

i
and

slomalaPF

break.pst.sg.f
nogu.
leg

‘While she was paying football, she broke her leg.’

Examples like (26) reveal the importance of the second condition: if the events
denoted by the two main verbs are connected, the discourse relation is not one of
Narration. As, according to Txurruka (2003), the natural language conjunction
‘and’ markes a coordinating relation, which means one of Narration, Background,
Result, Continuation, Parallel or Contrast (Asher and Vieu 2005), one has to
ensure that the Narration relation is the only possible one between the two
events.

(26) Ona
She

xorošo
well

igralaIPF

play.pst.sg.f
i
and

zarabotalaPF

pref.work.pst.sg.f
nagradu.
reward

‘She was playing good and earned a reward.’

On the basis of the observation by Txurruka (2003) that Narration is marked
by then, we propose to use the substitution of potom ‘then’ instead of i ‘and’ to
check whether it is in fact Narration that connects the two coordinated clauses.
If it is, then the meaning of the two sentences is (nearly) identical (compare (21)
with (27-a)). If it is not, the meaning changes significantly after such substitution
(compare (25) with (27-b) and (26) with (27-c): the sentences in (27-b) and (27-c)
suggest that the second event is not caused or explained by the first one).

(27) a. Ja
I

s”emPF

s.eat.pres.1sg
zavtrak,
breakfast,

potom
then

pojduPF

po.go.pres.1sg
na
on

rabotu.
work

‘I will finish my breakfast, then I will go to work.’
b. Ona

She
igralaIPF

play.pst.sg.f
v
in

futbol,
football,

potom
then

slomalaPF

break.pst.sg.f
nogu.
leg

‘She was paying football, then she broke her leg.’
c. Ona

She
xorošo
well

igralaIPF ,
play.pst.sg.f,

potom
then

zarabotalaPF

pref.work.pst.sg.f
nagradu.
reward

‘She was playing good, then she earned a reward.’

Examples in (28) and (29) demonstrate why the second condition is important:
a sequence of two sentences without a conjunction or any explicit adverbial
indicating their connection, as (28-a), is a bit strange (also a pause will be
present between the two sentences in such case), but acceptable in an appropriate
context (for example if someone is asked about his plans). (28-b), (28-c) are at
least much better than (21-b) and (22-b) and (28-d) is completely natural. In
those cases the Narration relation between the two clauses holds. In (28-b) and
(28-d) it is explicit due to the presence of potom ‘then’ that, as was mentioned
above, is a marker of the Narration. As the idea of the test is to exclude all the
coordinating relations (the coordinating requirement is imposed by i ‘and’, so
it must be present) except for Narration and see whether it can be established
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given that the verb in the second clause is perfective, it is important to not
include an explicit marker of this relation in the test context and thereby force
its application.

(28) a. Ja
I

jemIPF

eat.pres.1sg
zavtrak.
breakfast.

PojduPF

pref.go.pres.1sg
na
to

rabotu.
work

‘I’m eating breakfast. Will go to work.’
b. ?Ja

I
jemIPF zavtrak
eat.pres.1sg

i
breakfast

potom
and

pojduPF

afterwards
na rabotu.
pres.go.pres.1sg to work

‘I’m eating breakfast and will go to work afterwards.’
c. ?Ja

I
jemIPF

eat.pres.1sg
zavtrak
breakfast

i
and

obyazatel’no
necessarily

pojduPF

pres.go.pres.1sg
na.
to

‘I’m eating breakfast and I of course will go to work.’
d. Ja

I
jemIPF

eat.pres.1sg
zavtrak.
breakfast.

Potom
Afterwards

pojduPF

pres.go.pres.1sg
na
to

rabotu.
work

‘I’m eating breakfast. Will go to work afterwards.’

Similarly in the past tense, (29-a) is perfectly fine in a context in which the
speaker remembers what s/he did on a given occasion, and just in case there is
a distinct pause between the two sentences. For (29-b), there do not seem to be
any clear judgments and (29-c) is also fine.

(29) a. Ja
I

elIPF

eat.pst.sg.m
zavtrak.
breakfast.

PošelPF

pres.go.pst.sg.m
na
to

rabotu.
work

‘I was eating breakfast. Went to work.’
b. ?Ja

I
elIPF

eat.pst.sg.m
zavtrak
breakfast

i
and

potom
afterwards

pošelPF na rabotu.
pres.go.pst.sg.m to work

‘I was eating breakfast and went to work afterwards.’
c. Ja

I
elIPF

eat.pst.sg.m
zavtrak.
breakfast.

Potom
Afterwards

pošelPF

pres.go.pst.sg.m
na
to work

rabotu.

‘I was eating breakfast. I went to work afterwards.’

Such examples should suffice to illustrate the basic intuition behind the test. The
main idea of the test is the well-known generalization given by Jespersen (1924)
that if the verb is imperfective, it does not trigger narrative progression (in
our case it is the verb in the first clause). Theoretically speaking, the relevant
background for the workings of the test is best outlined in Altshuler (2012).
His account of the discourse properties of the Russian imperfective relies on a
multi-coordinate approach to aspect. He proposes interpretations for the narr
operator and for the aspectual operators and explains why only perfective verb
is fine in (30-a) (ex. (73-a) in Altshuler 2012), which is an example similar to
our test context.

(30) a. Lev
Lev

ko
to

mne
me

{OKpriexalPF

{OKpref.arrive.pst.3sg
/
/

#priezžalIPF }
#pref.arrive.imp.pst.3sg

b. i
and

srazu
right.away

pošelPF

pref.go.pst.3sg
kušat’.
eat

‘Lev arrived at my place and went to go eat right away.’
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Now let us apply the test to the verbs dopisyvat’ ‘to finish/be finishing writing’
and dozapisyvat’ ‘to finish/be finishing recording’. According to the syntactic
theories, summarized in Sect. 3, these verbs are always assigned to one aspect:
either perfective (Ramchand 2004; Romanova 2004; Svenonius 2004b) or imper-
fective (Tatevosov 2009). However, as examples (31) and (32) show, these two
verbs pattern differently with respect to the narration relation test.

(31) a. ??Ja
??I

dopisyvaju
do.write.imp.pres.1sg

tekst
text

i
and

pojduPF

go.pres.1sg
domoj.
home

b. Ja
I

dozapisyvaju
do.za.write.imp.pres.1sg

disk
CD

i
and

pojduPF

go.pres.1sg
domoj.
home

I will finish recording the CD and go home.

(32) a. ??Ja
??I

dopisyval
do.write.imp.pst.sg.m

text
tekst

i
and

pošelPF

go.pst.sg.m
domoj.
home

b. Ja
I

dozapisyval
do.za.write.imp.pst.sg.m

disk
CD

i
and

pošelPF

go.pst.sg.m
domoj.
home

I will finish recording the CD and go home.

Examples (33-b) and (34-b) show that the same results as for dozapisyvat’ are
obtained for other verbs formed following the same pattern for biaspectual verbs
(1). A good example is dovyšivat’ ‘to finish embroidering’. Notice that a deriva-
tionally related verb with the same root, namely, došivat’, to finish/be finishing
sewing) is not acceptable in the test context, as shown by the examples (33-a)
and (34-a).

(33) a. ??Ja
??I

došivala
do.sew.imp.pst.sg.f

platje
dress

i
and

podarilaPF

pref.present.pst.sg.f
ego
he

sestre.
sister

b. Ja
I

dovyšivala
do.embroid.imp.pst.sg.f

kartinu
picture

i
and

povesilaPF

pref.hang.pst.sg.f
eë.
she

‘I finished embroidering the picture and hang it (on the wall).’

(34) a. ??Ja
??I

došivaju
do.sew.imp.pres.1sg

platje
dress

i
and

podarjuPF ego sestre.
pref.present.pres.1sg he sister

b. Ja
I

dovyšivala
do.embroid.imp.pst.sg.f

kartinu
picture

i
and

povesilaPF

pref.hang.pst.sg.f
eë.
she

‘I finished embroidering the picture and hang it (on the wall).’

To summarize, we have shown that the verbs formed according to the pattern in
(1), e.g. dozapisyvat’, behave like those verbs that are traditionally considered
biaspectual (e.g., kaznit’) and are intractable in the syntactic theories.

5 Discussion

As we have seen there is no test that allows to positively identify perfective
verbs. This problem together with the widespread assumption that Russian ver-
bal aspect is a binary category seems to be the reason why complex biaspectual
verbs have remained largely unexplored and tend to be lumped together with
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imperfective verbs. Traditional descriptive studies tend to mention only simplex
biaspectual verbs, rather than complex ones, which are the focus of this paper.
As for the recent syntactic theories of Russian prefixation, we aimed to provide
evidence that they cannot account for the existence of complex biaspectual verbs
without further modifications.

The existence of a non-neglectable class of complex verbs that can behave
either as perfective or imperfective verbs, in dependence on context, raises impor-
tant questions about their status with respect to the bipartite perfective vs.
imperfective distinction. In what follows, let us briefly mention the following
three. First, are such verbs ambiguous between the perfective and imperfec-
tive aspect or are they underspecified for grammatical aspect? The claim that
they are ambiguous would imply that there are two different verbs (each with
a different internal structure) that just happen to have the same phonological
realization.

Second, it is not entirely clear whether there is just one class of complex
verbs with variable grammatical aspect behavior or whether its domain needs
to be split into subclasses. Third, what also needs to be clarified is the relation
of complex verbs with variable grammatical aspect behavior to native simple
biaspectual verbs like kaznit’, and to borrowed biaspectual verbs, both sim-
ple and complex, like (pod-)amortizirovat’ ‘to cushion (slightly).’ The latter are
claimed to lose their biaspectuality over time (see, e.g., Janda 2007; Korba 2007),
in contrast to native biaspectual verbs like kaznit’. The answer to such questions
must be left for future research.

A large part of the paper is devoted to providing a new positive test for
perfectivity. This test relies on discourse structure, and its application requires
several conditions to be observed. So far, no other suitable general positive test
for perfectivity has been put forth. The fact that syntactic and morphological
properties are used for a positive identification of imperfectivity, but the dis-
course level is needed in order to positively establish perfectivity of a given verb,
is in itself an intriguing indication about another difference between imperfective
and perfective aspect, which has not yet been noticed.

This paper is a part of a larger research program. In a related paper by
(Zinova and Filip 2014) it is shown that there are other prefixed biaspectual
verbs (not only prefixed with the completive do-, but also with the iterative
pere- and the attenuative pri-). Some motivation why exactly those complex
verb forms (with such prefixes) exhibit properties of biaspectuality is also pro-
vided. Significantly, the distinction between lexical and superlexical prefixes, and
other finer distinctions among prefixes based on syntactic criteria, proves to be
irrelevant in motivating their biaspectual behavior.
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