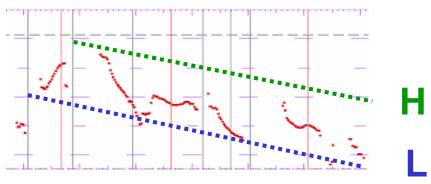
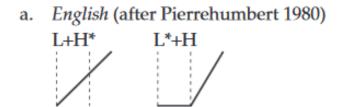
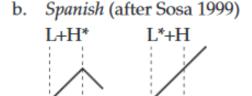
Autosegmental-metrical approaches to modelling Russian intonation: Evidence and issues

Tamara V. Rathcke


Forschungskolloquium Humboldt Universitaet zu Berlin

AM-approaches to intonational phonology


Main posits

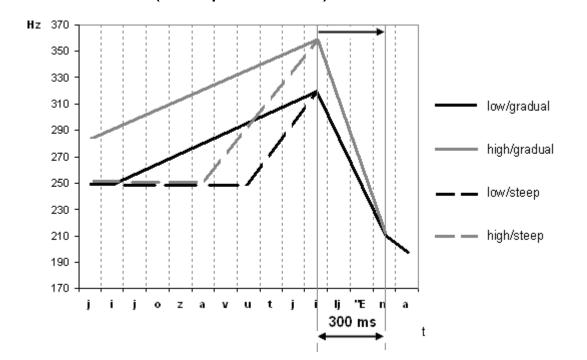

- Phonetic F0-contours are derived from a composition of tones
- Phonological primitives are tones H, L, (M)
 - Relative units defined with respect to
 - the speaker's pitch range: upper part (H) vs. lower part (L) of speaker's voice
 - local relationships: locally, H is higher than preceding or following L
 - phrasal position: in same position, H is higher than L

Association in AM-approaches

- Major pitch events: pitch accents
 - monotonal: L*, H*
 - bitonal: H+L*, L+H*, H*+L, L*+H
 - *-notation of a tone indicates that the tone has the primary association with the accented syllable
 - trailing/leading tones can have a secondary association
- Tonal association and tonal alignment

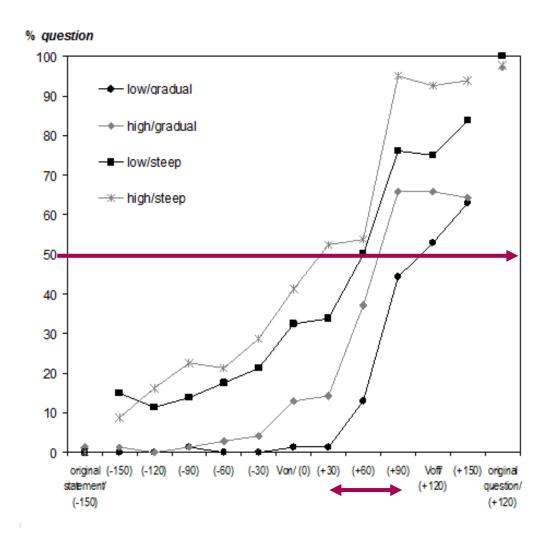
From Prieto 2009

Functions of tones


- (1) Delimitative: demarcate a phrase boundary
 - weak boundary: intermediate phrase, ip [L- or H-]
 - strong boundary: intonation phrase, IP (L% or H%)
- (2) Clarify the focus and information structure
 - Pitch accents are associated with a strong syllable
- (3) Pragmatic meanings of pitch events do not matter
 - L*-accents indicate that the information is in the common ground and can be derived from the preceding context
 - H*-accents add new contents to the common ground

AM-based descriptions of Russian intonation

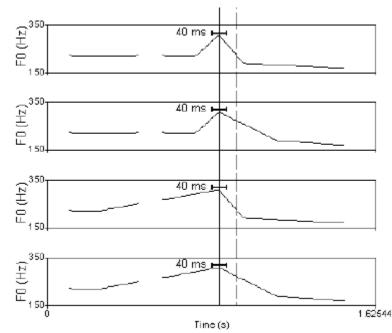
- Mostly case studies (Igarashi 2002,2005,2006, Makarova 2003, Rathcke 2006a,2006b,2013,2017, Yokoyama 1987,1990,2001)
- How many H-tone accents are there in Russian? (Igarashi 2002,2005,2006)
 - Igarashi (2002) assumes H*+L, H+L* und L*+H, L+H*
 - Analysing production data, Igarashi (2006) refutes H*+L as well as the distinction between L*+H/L+H*
 - Igarashi (2006): unclear which tone is associated in L+H (the location of both pitch targets outside of the accented syllable), an (unprincipled) assumption of L+H*
- Are L+H* and H+L* adequate and sufficient?
 - Perception data in Rathcke (2006a and 2006b)


Rathcke (2006a)

- A perception study of yes/no questions and statements
- Russian sentence 'Её зовут Елена' (Eng. Her name is Yelena)
 - 3 manipulations: (1) peak alignment 11 steps from early to late; (2) peach height (high/low) and (3) pitch rise (steep/shallow)

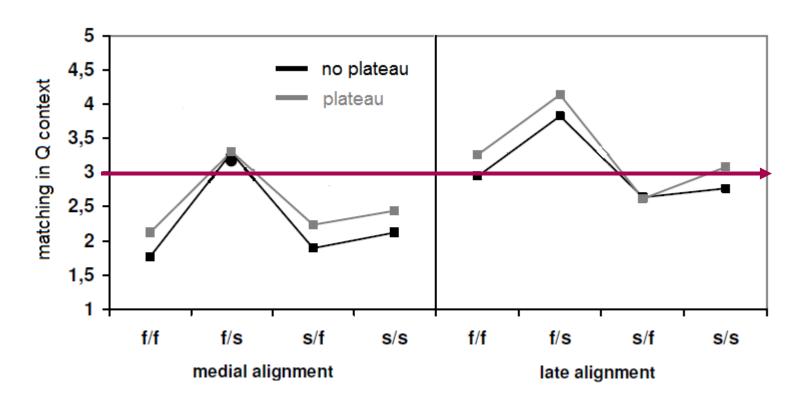
- 38 native listeners of Russian (7 male)
- Age: 20-56
- From various places of RF (based in Kiel)
- Classical CP paradigm (identification & discrimination)

Results of the identification tests


- (1) Later pitch peaks –more questionresponses (p<0.001)
- (2) Earlier shift for contours with a steep rise (p<0.001)
- (3) Peak height plays a less important role (n.s.)

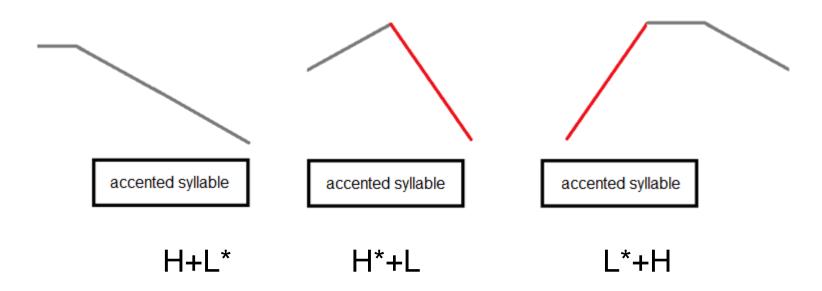
Perceptual evidence for Igarashi (2006) proposal:

- H+L*
- L+H, association unclear, likely L*+H


Rathcke (2006b)

- A perception study of yes/no questions and contrastive statements
- Russian sentence 'Она раньше не ела малину' (Eng. She didn't use to like raspberries)
 - 3 manipulations: (1) peak shape with 4 combinations of f0 rises and falls (fast/slow); (2) presence of a high plateau and (3) pitch peak alignment (medial vowel vs. late lateral)

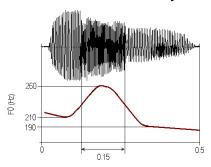
- 15 native listeners of Russian (6 male)
- Age: 14-15 (school students)
- From Kaliningrad
- Context-matching on a scale from 1 (definitely non-matching) to 5 (definitely matching)

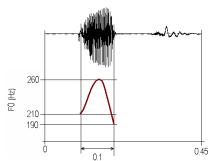

Results of context-matching tests

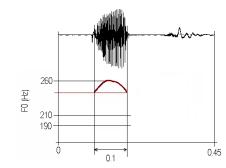
All manipulations significant (p<0.001), with a weak effect of a plateau and an equally strong effect of pitch shape and peak alignment

Implications for tonal analysis

- Best exemplar in neutral statements: slow rise, early Halignment
- Best exemplar in contrastive statement: slow/fast, medial Halignment (no plateau)
- Best exemplar in yes/no questions: fast/slow, late alignment (+plateau)


Other AM-based descriptions of Russian intonation


- The most comprehensive description (Odé 2003,2005)
 - Following a less wide-spread AM-account (Gussenhoven 1984, 1988, 1991) and the IPO school of intonation ('t Hart, Collier und Cohen, 1990, Odé 1989)
 - Pitch accents integrate/indicate tonal information in the accented syllable and all perceptually relevant movements between accents and at phrase boundaries
 - HL* for H+L*
 - H*L for both H*+L and L*+H
 - But also H*M and H*H likely related to tonal modifications due to upcoming phrase boundaries


Tonal modifications at phrase boundaries

Upcoming phrase boundaries exert time pressure on the realisations of pitch categories (Erickson & Alstermark 1972)

- Compression: the f0-velocity is increased, the accent is realised in a shorter time span
- **Truncation**: the f0-velocity is unchanged, f0-targets are cut off in their frequency

- English: "a compressing language par excellence" (Ladd 1996:133; Grabe 1998)
- Truncation far more common: e.g. Hungarian, Palermo Italian (Grice 1995), German (Grabe 1998), Spanish (Ortega-Llebaria 2009)

Rathcke (2017): truncation in Russian

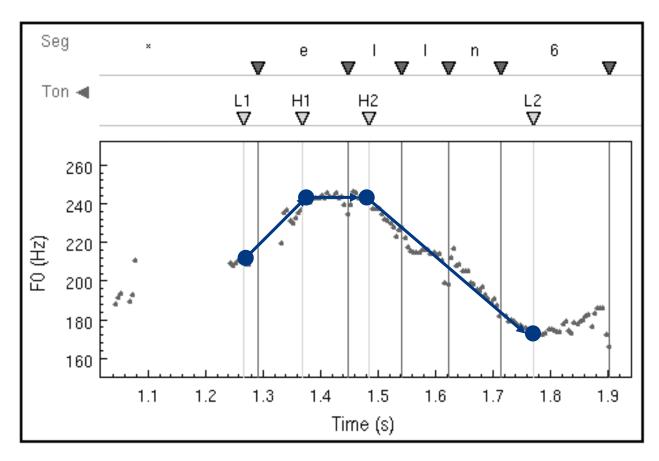
- Russian is known to be truncating phrase-final falls (Igarashi 2002; Odé 2005) – implications for phonological analyses? all falls truncated?
- Production study with 10 native speakers of Standard Russian (3 male), mean age 31 y.o. (from different cities of RF, in Munich)
 - 3 pitch accents H+L*, H*+L, L*+H (followed by L%, i.e. final falls)
 - Target words varied in:
 - (1) syllable count (1 vs. 0 after accented syllable)
 - (2) sonority of accented syllable (vowel surrounded by sonorants vs. obstruents <shif>)

Embedded in the sentence "Это был(а)" (It was ...)

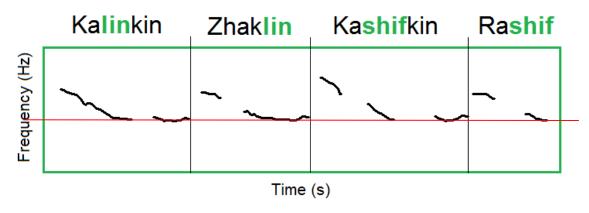
Imitation Task

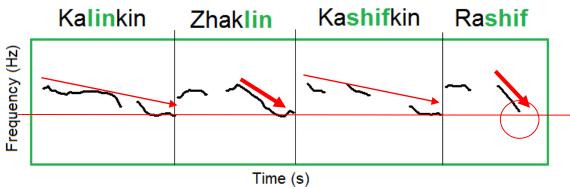
 Auditory presentation (headphones)

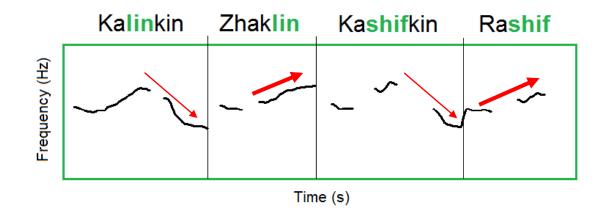
Visual presentation (card)


 Controlled production (microphone) Это был Немов? L*+H L%

Это был Рашив?


Acoustic analyses




3 repetitions x 4 target words x 2 categories = 24 tokens p. s. 10 native speakers of Standard Russian (3 male), mean age 31 y.o.

(1) **F0-height** of L

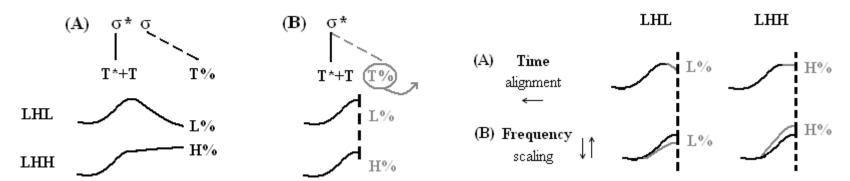
- in st, normalised to mean f0
- truncation: Lundershoot
- (2) **F0-velocity** of the fall
 - in st/sec
 - compression: increase of the f0velocity
- (3) **Alignment** (of H* or L*) normalised to the duration of the accented syllable

H+L* L%

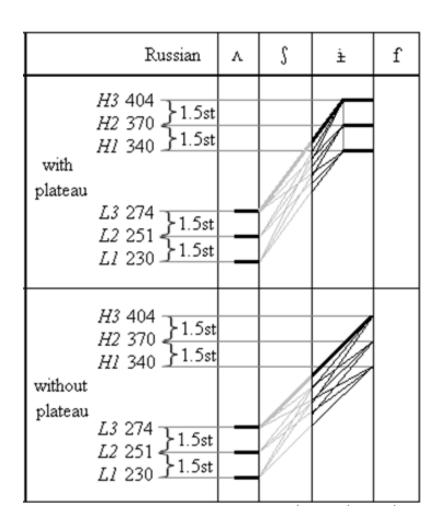
- no truncation
- no compression
- some realignment

H*+L L%

- some truncation (1-4 st)
- some compression
- some realignment


L*+H L%

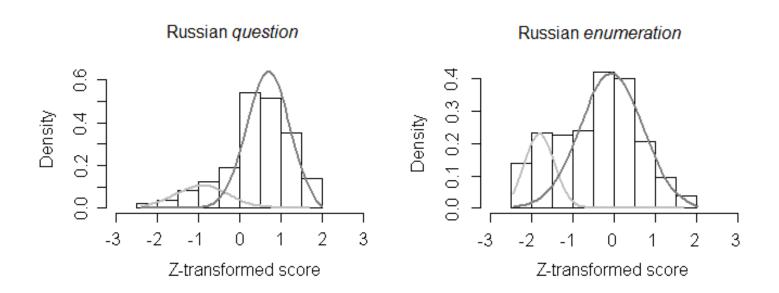
- categorical truncation
- no compression
- some realignment
 University of **Kent**


Role of truncation in phonology

Truncation is not a unified phenomenon:

- L*+H L% in Russian is truncated through a complete loss of the secondarily associated L% (categorical truncation)
- H*+L L% in Russian is slightly truncated (gradual truncation)
 - Some of these cases are likely to have been identified as H*H and H*M, respectively in Odé (2003,2005)
 - Further support for the perceptually argued analysis of H*+L (here: preservation of a trailing tone, truncation of L%)

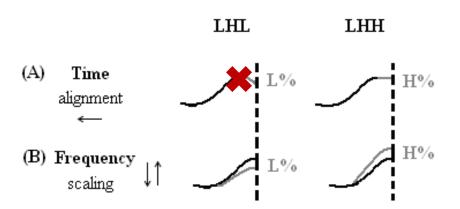
Rathcke (2013): a perception study of truncation


- Russian sentence "Это Рашив" (This is Rashif)
- a set of 18 stimuli:

3 L-values x 3 H-values x 2 f0-trajectories

- Task: matching contextual fit on the scale from -4 to +4 in two contexts:
- (1) yes-no question (L*+H L%): 'Is that Rashif? Do you happen to know it?'
- (2) List (L*+H H%): 'There are Rashif, Tamara and Anthony.'
- 22 listeners (aged 22-49)
- 9-point scale responses z-score transformed to account for individual biases

University of **Kent**


Discriminating between truncated H% and L%

- Bias toward accepting all contours in both contexts
- Neutralisation of truncated L% and H% is quite advanced, though not complete
 - An overall bias towards the identification of L% (questions) is surprising: if neutralisation is advanced, we would rather predict a bias towards LHH since truncation mainly "deforms" the surface form L%

Acoustic differences between truncated H% and L%

- Best exemplar for L*+H L%
 - high H of +H
 - presence of a high plateau
- Best exemplar for L*+H H%
 - low H of +H
 - Simple rise

- These results do not support the idea that the phonetics of truncation can be explained by the phonological composition of tonal strings
- Rather, the phonetics of truncation seems to reflect the meaning carried by the tonal strings
 - Overall up-scaling of the tune that expresses a question (Ohala 1984, Gussenhoven 2000)

Conclusions and outlook

- (1) Our understanding of Russian intonation (in terms of AM-modelling) is still rather fragmentary.
 - Baseline for the study of some research questions is missing and has to be established as control conditions
- (2) Modifications of pitch patterns under time pressure are language- and accent-specific
 - Poor understanding of phonetic adjustment strategies might lead to incorrect assumptions about the structure of tonal representations
- (3) A growing body of research shows that it is impossible to avoid pragmatic meanings when studying intonation (e.g. Niebuhr and Ward 2018)
 - Consistent effects on phonetic realisations of pitch accents, if phonetics guides the discussion of pitch accent structure (Pierrehumbert 1980, Pierrehumbert & Beckman 1988, Ladd 1996)

Thank you!

@tamarathcke

