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1 Introduction

The goal of this paper is to discuss the question of whether cumu-
lative theories are indispensable, because they are needed in order
to capture certain linguistic phenomena, or whether cumulative
effects can be expressed equally well in an optimality-theoretic
framework. If so, cumulative theories could be integrated into Op-
timality Theory (OT).

At first sight, the two theories seem to behave very differently.
In OT, the number of violations of low-ranked constraints does not
play any role as long as the constraint that is decisive for the out-
come of the competition is higher-ranked. In a cumulative theory,
on the other hand, the situation is somewhat different, because
the underlying principle is that the weights of the involved factors
are added up. Thus it can happen that some factors which indi-
vidually do not have much weight and are therefore unimportant
on their own become decisive as soon as they cooccur or appear
repeatedly.

As empirical background I will use Pafel’s cumulative approach
to quantifier scope in German (cf. Pafel (1998)). I will discuss

∗For comments and discussion I want to thank Fabian Heck, Gereon Müller,
Tanja Schmid, Wolfgang Sternefeld, Sten Vikner, and Ralf Vogel.
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whether it is possible to “translate” it into OT, where the difficul-
ties lie, and what kind of assumptions one might have to make.
What I will not do is discuss Pafel’s theory as such, that is, discuss
whether it is able to capture the phenomenon of quantifier scope
or where its advantages and disadvantages might lie; nor is the aim
of this paper to provide an adequate optimality-theoretic account
of quantifier scope in general (for this purpose see Heck (1999)).
Pafel’s theory only serves as a case study for a more theoretical
debate; therefore, the approach itself as well as the judgments on
the sentences are neither changed nor commented on.

2 Pafel’s Approach to Quantifier

Scope

Pafel introduces a number of factors that seem to have an impact
on the scopal behavior of quantifiers, i.e., whether they tend to
take wide scope over other quantifiers or not. Each factor is as-
signed some weight. In order to decide which one of two quantifiers
in a given sentence tends to take wide scope, one has to determine
which factors are relevant for each quantifier in the given context.
Then one can calculate the scopal value (SV) of each quantifier by
adding up the values of the relevant factors. The scopal behavior
can then be determined from the difference between the scopal
values as follows:
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(i) |SV(Q1)−SV(Q2)|≥ 1 :

The quantifier with the larger SV takes wide scope
(i.e., the sentence is unambiguous).

(ii) |SV(Q1)−SV(Q2)|< 1 :

Either quantifier may take wide scope (i.e., the sen-
tence is ambiguous).

(a) 0 <|SV(Q1)−SV(Q2)|< 1 :

The reading in which the quantifier with the larger
SV takes wide scope is preferred.

(b) |SV(Q1)−SV(Q2)|= 0 :

Both readings are equally well available.1

The cumulative character of the approach is illustrated by the
following four examples (Pafel’s examples (3.17), (3.45), (3.42),
(3.1)), in which the factors SUBJECT, EX-PRE (external prece-
dence) and IN-DIS (inherent distributivity) are involved. These
factors are defined as follows:

weight:
EX-PRE . . . is assigned to quantifiers in the

‘Vorfeld’ which linearly precede
other quantifiers;

1.5

SUBJECT . . . is assigned to subject quantifiers; 1

IN-DIS . . . is assigned to quantifiers that have
an inherently distributive charac-
ter.

1

1The distinction between (ii-a) and (ii-b) is only mentioned for complete-
ness’ sake. It does not play any role in the further discussion, since the question
of how this difference can be expressed in an optimality-theoretic framework
is not addressed here.
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(1) Jeder
[every

Pianist
pianist]nom

hat
has

eine
[a

Fuge
fugue]acc

in
in

seinem
his

Repertoire.
repertoire

Q1=jeder Pianist, Q2=eine Fuge

Q1: EX-PRE + SUBJECT + IN-DIS
Q2: —

SV(Q1)=1.5+1+1=3.5
SV(Q2)=0

Q1 > Q2 (i.e., Q1 has relative scope over Q2): possible
Q2 > Q1 (i.e., Q2 has relative scope over Q1): impossible

(2) Jede
[every

Fuge
fugue]acc

hat
has

ein
[a

Pianist
pianist]nom

in
in

seinem
his

Repertoire.
repertoire

Q1: EX-PRE + IN-DIS SV(Q1)=1.5+1=2.5
Q2: SUBJECT SV(Q2)=1

Q1 > Q2: possible
Q2 > Q1: impossible

(3) Ein
[a

Pianist
pianist]nom

hat
has

jede
[every

Fuge
fugue]acc

in
in

seinem
his

Repertoire.
repertoire

Q1: EX-PRE + SUBJECT SV(Q1)=1.5+1=2.5
Q2: IN-DIS SV(Q2)=1

Q1 > Q2: possible
Q2 > Q1: impossible

(4) Eine
[a

Fuge
fugue]acc

hat
has

jeder
[every

Pianist
pianist]nom

in
in

seinem
his

Repertoire.
repertoire

Q1: EX-PRE SV(Q1)=1.5
Q2: SUBJECT + IN-DIS SV(Q2)=1+1=2
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Q1 > Q2: possible
Q2 > Q1: possible

As these examples show, the scopal behavior of the quantifiers
depends on the combination of the factors. Although, for instance,
the factors SUBJECT and IN-DIS on their own do not indicate a
general tendency to wide scope (cf. (2) and (3)), this can be the
case if they cooccur (cf. example (4)).

3 The Translation into OT

What we need in order to establish an optimality-theoretic account
of the data above are, informally speaking, candidates, constraints,
and a constraint ranking; and if we try to show that OT can do
the job as well as the cumulative theory, these have to be chosen
in such a way that the results are equivalent to Pafel’s results. Of
course we cannot restrict ourselves to the four examples above, but
for the beginning they already constitute a task and draw one’s
attention to the main problems.

Since in Pafel’s theory relative quantifier scope only depends
on the comparison of the involved quantifiers described in terms of
a certain set of factors, and is not influenced by any further compo-
nent like the syntactic derivation, the translation into OT might
require some unconventional assumptions. The starting point is
that we have two quantifiers with different properties, and based
on this information alone our theory should be able to predict the
possible scope relations. In analogy to Pafel’s procedure I therefore
propose that the quantifiers of the sentence under consideration
constitute the candidate set and that the optimal candidate will
be the quantifier which tends to take wide scope. In the case of
ambiguous sentences this means that the candidates will have to
be equally optimal.

As far as the constraints are concerned, it seems to be reason-
able to adopt Pafel’s factors and, as a first try, rank them accord-
ing to their weight in Pafel’s account such that constraints with
greater weight are higher-ranked and constraints with the same
weight are considered to be tied. With regard to the examples
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above we thus have the following constraints:

EX-PRE (E): Quantifiers must occur in the ‘Vorfeld’ and
precede some other quantifier.

SUBJECT (S): Quantifiers must be subjects.

IN-DIS (I): Quantifiers must be inherently distributive.

In order to get more plausible candidates than merely the quanti-
fiers under consideration, one can alternatively use the sentences’
S-structures as input, which yields potential LFs as output. If it is
assumed that the possibility for a quantifier to take wide scope is
expressed by the fact that it precedes the other quantifier at LF,
and if the constraints are reinterpreted in such a way that they
refer to the first quantifier only (e.g., S: The first quantifier must
be the subject), we get exactly the same results. The candidates in
the tableaux are then to be understood as abbreviations for LF-
representations in which the quantifier in question precedes the
other quantifier.

Let’s see whether on these assumptions the predictions of
Pafel’s approach can be captured.

(5) First ranking: E � S ◦ I

(1) Jeder
[every

Pianist
pianist]nom

hat
has

eine
[a

Fuge
fugue]acc

in
in

seinem
his

Repertoire.
repertoire

T1:

Candidates E S I
⇒ Q1: jeder Pianist

Q2: eine Fuge ∗! ∗ ∗

(2) Jede
[every

Fuge
fugue]acc

hat
has

ein
[a

Pianist
pianist]nom

in
in

seinem
his

Repertoire.
repertoire
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T2:

Candidates E S I
⇒ Q1: jede Fuge ∗

Q2: ein Pianist ∗! ∗

(3) Ein
[a

Pianist
pianist]nom

hat
has

jede
[every

Fuge
fugue]acc

in
in

seinem
his

Repertoire.
repertoire

T3:

Candidates E S I
⇒ Q1: ein Pianist ∗

Q2: jede Fuge ∗! ∗

(4) Eine
[a

Fuge
fugue]acc

hat
has

jeder
[every

Pianist
pianist]nom

in
in

seinem
his

Rep.
rep.

T4:

Candidates E S I
⇒ Q1: eine Fuge ∗ ∗
* Q2: jeder Pianist ∗!

Unfortunately, this first approach does not work. Although the
constraint ranking in (5) predicts the scopal behavior of the sen-
tences (1)–(3) analogously to Pafel’s theory (cf. T1–T3), it is not
able to capture the ambiguity of example (4); cf. T4.

In order to predict this ambiguity, the two candidates in T4

both have to be optimal, which means that in contrast to the
situation in T1–T3, the violation of the constraint E in T4 must
not be fatal. If we compare the situation in T4 with that in T1–
T3, it can be concluded that it must be the simultaneous violation
of the two low-ranked constraints S and I that prevents the E-
violation of Q2 from being fatal. At this point we are faced with
an apparent contradiction. As mentioned in the introduction, it is
a basic principle of OT that violations of low-ranked constraints
cannot compensate for the violation of a higher-ranked constraint.

One way out of the dilemma would be to assume that there is a
further constraint at work which renders the E-violation harmless,
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so to speak. And based on the results of T1–T4, a natural way to
describe this constraint would be to say that it somehow combines
the constraints S and I. Thus we might use the following local
conjunction as a further constraint.2 (As far as local conjunctions
in general and in syntax in particular are concerned, cf. Smolensky
(1995) and Legendre et al. (1998) respectively.)

(6) S & I: Quantifiers must be subjects or inherently
distributive.

This constraint will be satisfied as long as at least one of the two
constraints S or I is fulfilled, and it will be violated whenever S
and I are simultaneously violated, which corresponds exactly to
the situation in T4 and distinguishes it from T1–T3. In order to
derive the right result in T4, we would like to say that E and S
& I are tied. But since ties are not defined in a unified way, it
has to be made explicit at this point what kind of ties we are
talking about. Basically, we can draw a distinction between local
and global ties (for a detailed analysis of different types of ties see
Müller (1999a)). The main difference between these two concepts
concerns the significance of violations of lower-ranked constraints.
Under a local tie approach the prediction will be that these vi-
olations become relevant as soon as neither the tied constraints
nor higher-ranked constraints decide the competition. Formally,
this means that a given language is determined by one constraint
ranking in which the tie is integrated as follows:

(7)

�
�

@
@

@
@

�
�

-
. . .�

E

S & I

�

�

S & I

E

� . . .

2If this constraint were translated back into Pafel’s theory, it would corre-
spond to a factor with the weight 2, since it involves both properties S (weight
1) and I (weight 1).
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Under a global tie approach, on the other hand, a language is
determined by a whole set of constraint rankings, namely those
which result if every possible resolution of the tie is understood to
be part of an independent order. This can be illustrated as in (8):

(8)

�
�

@
@

-

-

. . . �
E� S & I

�ES & I

. . .

. . .

�

�

−→ constraint order α

−→ constraint order β

Optimality is then to be understood as optimality with regard to at
least one of the resulting constraint orders. One consequence of this
approach is that violations of constraints that are lower-ranked
than the tie itself are irrelevant as long as there is at least one
ranking under which the candidate is better than the competing
ones.

If we assume that E and S & I are locally tied, we will not
immediately get the right result for sentence (4), as T5 shows.3

(4) Eine
[a

Fuge
fugue]acc

hat
has

jeder
[every

Pianist
pianist]nom

in
in

seinem
his

Rep.
rep.

T5:

Candidates E S & I S I
* Q1: eine Fuge ∗ ∗! ∗!
⇒ Q2: jeder Pianist ∗

3The question might arise of whether it is legitimate to restrict the com-
petition to the four constraints considered in T5. It is true that there are
higher-ranked constraints on which Q1 and Q2 differ, namely E & X and any
local conjunction containing X and S or I, where X is a constraint that is
violated by both candidates. However, the cumulative character of the con-
straints ensures that (A & X) � or ◦ (B & X) ⇔ A � or ◦ B. Thus, the
outcome of a competition involving the constraints A & X, B & X, A, and B
does not change if A & X and B & X are not taken into account.
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In this case, Q2 will win, because it does not violate the two low-
ranked constraints S and I, in contrast to Q1. For this approach to
work, it would have to be assumed that the local conjunction X &
Y (“X or Y must hold”) somehow replaces the simple constraints
X and Y, such that in a competition where X & Y is involved, X
and Y must be excluded. (Intuitively it does not seem to be so
unreasonable that one constraint should not be referred to twice,
once in the form of X and the second time in the form of the
local conjunction X & Y. For a related idea in which certain ele-
ments are only referred to once in determining the grammaticality
of a given derivation, cf. Richards’s (1998) Principle of Minimal
Compliance.)

So if we replace T5 with T6, where S and I are excluded from
the competition, and if we assume that E and S & I are locally
tied, we finally get the right prediction for sentence (4):

T6:

Candidates E S & I
⇒ Q1: eine Fuge ∗
⇒ Q2: jeder Pianist ∗

Alternatively, we could assume that the relation between the con-
straints E and S & I is expressed in terms of an ordered global tie
(as illustrated in diagram (8)). With regard to sentence (4), this
means that the tableau we would get would be equivalent to T5,
except that the violations of S and I would not be fatal and both
quantifiers would be optimal: Q1 under constraint order α and Q2

under constraint order β.

T7:

Candidates E S & I S I
⇒ Q1: eine Fuge ∗(!) ∗ ∗
⇒ Q2: jeder Pianist ∗(!)

To sum up, the underlying ranking we have assumed so far is
E ◦ S & I � S ◦ I. However, the following example reveals that
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this order cannot be completely correct. In order to capture the
ambiguity of sentence (9), which corresponds to Pafel’s example
(3.108b), E and S have to be tied.

(9) Eine
[a

Fuge
fugue]acc

haben
have

einige
[some

Pianisten
pianists]nom

in
in

ihrem
their

Rep.
rep.

Q1: EX-PRE SV(Q1)=1.5
Q2: SUBJECT SV(Q2)=1

Q1 > Q2: possible
Q2 > Q1: possible

T8:

Candidates E S
⇒ Q1: eine Fuge ∗
⇒ Q2: einige Pianisten ∗

This observation raises a severe problem. If we assume on the one
hand that E is tied with S (and also with I, as the difference
between the scopal values shows), and on the other hand that E is
tied with S & I, we have to conclude that S & I is also tied with S
and I because of transitivity. But if we consider these constraints
in the light of Pafel’s approach,4 they correspond to factors with
the weights 2 and 1 respectively, which means that the difference
is ≥ 1. Thus only the factor with the greater weight should be
able to take wide scope, and the corresponding constraint should
be higher-ranked than the other one. So it must be concluded that
we face a problem with regard to transitivity.

4It is not possible to provide a concrete example that only involves the two
constraints S & I and S or I. These combinations are ruled out, because Pafel’s
postulation of the two contrasting factors EX-PRE and IN-PRE assures that
one of them is always involved. (The latter property is assigned to quantifiers
in the ‘Mittelfeld’ that linearly precede other quantifiers.) But I think the
general problem becomes clear nevertheless.
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4 The Transitivity Problem

As far as the examples (1)–(4) are concerned, it seems to be pos-
sible to derive the predictions of Pafel’s cumulative theory (CT)
by means of an optimality-theoretic analysis somehow. However,
there is one essential difference between the two theories, which
probably constitutes the main difficulty for the integration of cu-
mulative effects into OT. If we compare the behavior of two quanti-
fiers in Pafel’s theory, there are three possible results: The absolute
value of the difference between the scopal values might be ≥ 1, =
0, or ∈ ] 0, 1[. In OT, on the other hand, we basically have two
possibilities to describe the relation between two constraints. One
can be higher-ranked than the other, or they can be tied. As men-
tioned before, it seems to be reasonable to assume the following
“translation rules” (where A and B are factors relevant for scope,
W(X):= the weight of factor X, and Con(X):= the constraint de-
rived from factor X):

(i) W(A)=W(B) −→ Con(A) ◦ Con(B)

(ii) W(A)−W(B) ≥ 1 −→ Con(A) � Con(B)

However, the third possibility, where 0<|W(A)−W(B)|< 1, is
problematic. On the one hand, this configuration predicts ambi-
guity, thus the corresponding constraints cannot be ranked in a
dominance relation. But if they are tied, we have a problem with
transitivity, as was already observed at the end of the last section.
Consider the following configuration:

SV(Q1)=2 involved factor: A
SV(Q2)=1.5 involved factor: B
SV(Q3)=1 involved factor: C
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CT: (a) SV(Q1)−SV(Q2)=0.5 −→ predicts ambiguity
(b) SV(Q2)−SV(Q3)=0.5 −→ predicts ambiguity

but: (c) SV(Q1)−SV(Q3)=1 −→ predicts no ambiguity

OT: According to the result in (a), one would like to say that
A ◦ B; but according to the result in (b), one would like
to say that B ◦ C.

−→ Because of transitivity, we would have to assume A ◦ C.
This contradicts the result in (c), according to which we
would expect that A � C.

So if we assumed a strict transitive order, the consequence would
be that all factors belonging to the set TF would translate into tied
constraints, where TF is defined as the set containing the factor
F and all those factors whose weights are less than 1 step away
from the weight of an element belonging to TF . This domino effect
would render most of the constraints equally strong and lead to
false predictions, as the following example illustrates. This exam-
ple (Pafel’s number 3.104) contains a new factor, SL-PAT, which
is assigned to quantifiers with a slight tendency to be interpreted
as Patients. It has the weight 1 and translates into the constraint
SL, which says that quantifiers must have a slight tendency to be
interpreted as Patients.

(10) Einem
[a

Kind
child]dat

hat
has

er
[he]nom

jedes
[every

Märchen
fairytale]acc

erzählt.
told

Q1: EX-PRE + SL-PAT SV(Q1)=1.5+1=2.5
Q2: IN-DIS SV(Q2)=1

Q1 > Q2: possible
Q2 > Q1: impossible

Starting with the difference in weight between the two factors E
and I, which is 1.5−1=0.5, we can assume that E ◦ I. Similarly,
from the difference between the weights associated with E and
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SL & I, which is 2−1.5=0.5, we can conclude that E ◦ SL & I; so
according to transitivity we get the relation I ◦ SL & I. On the
other hand, SL & I is tied with E & SL, since the relevant difference
is 2.5−2=0.5. Again because of transitivity, we therefore get the
result that I ◦ E & SL. But as illustrated in T9, this gives us the
wrong predictions with regard to sentence (10), in which only the
first quantifier can take wide scope.

T9:

Candidates E & SL I
⇒ Q1: einem Kind ∗

* ⇒ Q2: jedes Märchen ∗

If we want to make sure that only Q1 wins, E & SL must be ranked
higher than I, a ranking which is also suggested by the difference
between their corresponding weights, which is 2.5−1=1.5.

I do not know how to solve this problem without giving up to
some extent the idea that constraint orders must be strictly tran-
sitive. But if we allow that A ◦ B and B ◦ C does not necessarily
imply A ◦ C, we can account for the examples above with the
following diagram:

(11)

�
�
�
�
�

@
@
@
@
@

@
@@

-

-

-

A

B

�

�

�

B

C

A

�

�

�

C

B

C

�

�

�

D

D

D

−→ constraint order α
(. . . A � B � C . . . )

−→ constraint order β
(. . . A � C � B . . . )

−→ constraint order γ
(. . . B � A � C . . . )

In (11), two global ties are involved, which express the relations
A ◦ B and B ◦ C, but still all three resulting constraint orders
predict that A is higher-ranked than C. This is possible because
in contrast to usual assumptions, according to which the branches
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of global ties are continued in the same way, the second tie in (11)
does not affect all branches, but is only part of the two constraint
orders α and β. So we could propose that the occurrence of global
ties need not necessarily affect all branches of the ranking struc-
ture. With this assumption the transitivity problem can be solved,
which means that the idea of strict transitivity in constraint rank-
ings must be given up (and this might be a controversial result).
However, transitivity does not have to be given up completely,
since each constraint order in itself remains transitive. It seems
to me that this is the easiest way to integrate the non-transitive
effects of cumulative theories into OT.5

The question then arises of how the underlying relation be-
tween the constraints A, B, and C, which is illustrated in (11),
can be formally expressed. Following a suggestion by Ralf Vogel
(p.c.), I propose that it can be captured adequately by the rela-
tion (A� C) ◦ B, where this kind of interaction between ties and
hierarchical rankings is defined as follows:

(12) (A � C) ◦ B := A ◦ B � C ∨ A � C ◦ B

= A � B � C ∨ B � A � C
∨ A � C � B (∨ A � B � C)

resulting constraint orders: (i) A � B � C
(ii) B � A � C

(iii) A � C � B

This definition can be generalized in such a way that it can be
applied to all sorts of combinations between ties and (bracketed)
asymmetric rankings. The crucial point is that the brackets on
hierarchical rankings make it possible to preserve this hierarchy
even in a tied order. This means that if the tie is resolved, it will
yield only those combinations possible between the tied elements

5The situation in which A ◦ B and B ◦ C, but C � A must be excluded,
is not as unusual as it may seem at first sight. It also occurs, for example, in
Müller (1999b), where it is assumed on the one hand (by transitivity) that A
◦ C, but where on the other hand C� A is excluded because of an underlying
meta-constraint which says that A must be higher-ranked than C.
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in which the hierarchy indicated in brackets is preserved.

5 Combining Constraints

In section 3 we considered four sentences that involved the simple
constraints E, S, and I. In order to account for the behavior of the
quantifiers in these examples, the additional constraint S & I was
introduced. But what about constraints like E & S, E & I, or E & S
& I? The question that needs to be discussed at this point is what
kind of constraint combinations have to be taken into account.
Since quantifiers can exhibit all sorts of combined properties, the
answer should be that in principle all constraint combinations have
to be considered. However, if we examined quantifiers with n dif-
ferent properties, we would have to discuss 2n−1 constraints. Since
the first four sentences have already shown that a certain subset
of all constraints seems to suffice to determine the outcome of the
competition for a concrete example, it would be helpful to find out
what this subset has to look like.

Remember that the last observation in section 3 was that E
must not only be tied with S & I, but also with S and I, whereas
S & I is higher-ranked than S and I, giving rise to the transitivity
problem. In the light of the previous section, we can now assume
that the underlying formal relation is (S & I � S ◦ I) ◦ E, which
is illustrated by the diagram in (13) (cf. also the calculation in the
appendix).
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(13)

�
�
�
�
�
�

@
@
@
@
@
@

��

@@

-

-

�
�
�
�
�
�

@
@
@
@
@
@

��

@@

��

@@

��

@@

-

-

-

-

-

-

E

S & I

�

�

S & I

E

S

I

�

�

�

�

S

I
S

I
E

I
S

E

�

�
�

�
�

�
�

�

I

S
I

S
I

E
E

S

→ constraint order α

→ constraint order β

→ constraint order γ

→ constraint order δ

This constraint ranking is indeed able to predict the ambiguity of
sentence (4)6 (cf. T10). But if the competition is restricted to the
same set of constraints (i.e., {S & I, E, S, I}), it does not make
the correct predictions for the unambiguous sentences (2) and (3),
in which only the first quantifier can take wide scope (cf. T11 and
T12).

(4) Eine
[a

Fuge
fugue]acc

hat
has

jeder
[every

Pianist
pianist]nom

in
in

seinem
his

Rep.
rep.

T10:

Candidates S & I | E | S I
⇒ Q1: eine Fuge ∗(!) | | ∗ ∗
⇒ Q2: jeder Pianist | ∗(!) |

(2) Jede
[every

Fuge
fugue]acc

hat
has

ein
[a

Pianist
pianist]nom

in
in

seinem
his

Repertoire.
repertoire

6The dotted lines in the tableaux indicate that two neighboring constraints
X and Y are tied, but that their corresponding weights are not equal.
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T11:

Candidates S & I | E | S I
⇒ Q1: jede Fuge | | ∗(!)

* ⇒ Q2: ein Pianist | ∗(!) | ∗(!)

(3) Ein
[a

Pianist
pianist]nom

hat
has

jede
[every

Fuge
fugue]acc

in
in

seinem
his

Repertoire.
repertoire

T12:

Candidates S & I | E | S I
⇒ Q1: ein Pianist | | ∗(!)

* ⇒ Q2: jede Fuge | ∗(!) | ∗(!)

According to structure (13), not only Q1 but also Q2 is optimal in
both tableaux, namely under the constraint orders α and β in the
case of T11, and under the constraint orders γ and δ in the case of
T12. The conclusion that can be drawn is that the constraint sub-
set relevant for the examples (2) and (3) has not been completely
taken into consideration in T11 and T12. Based on our observa-
tions concerning sentence (4), it seems reasonable to assume that
the relevant subset CONrel (i.e., the smallest set of constraints to
which the competition can be reduced) consists of two members
only, namely the combinations of the constraints derived from the
properties of each quantifier. As far as the examples (2) and (3)
are concerned, this means that the relevant constraint subsets are
{E & I, S} and {E & S, I} respectively (cf. T13 and T14).

T13:

Candidates E & I S
⇒ Q1: jede Fuge ∗

Q2: ein Pianist ∗!

T14:

Candidates E & S I
⇒ Q1: ein Pianist ∗

Q2: jede Fuge ∗!
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The following example7 serves as a further illustration of this gen-
eralization concerning CONrel. It contains two new factors: ST-L-
DB refers to strong lexical discourse binding and has the weight
2; FOCUS is assigned to focused quantifiers8 and has the weight
−1. These factors translate into the following two constraints:

ST-L-DB (ST): Quantifiers must occur in strong lexical dis-
course binding contexts.

FOCUS (F): Quantifiers must be focused.

(14) Welche
[which

Fuge
fugue]acc

hat
has

jeder
[every

Pianist
pianist]nom

in
in

seinem
his

Rep.?
rep.

Q1: EX-PRE + ST-L-DB + FOCUS
Q2: SUBJECT + IN-DIS

SV(Q1)=1.5+2−1=2.5
SV(Q2)=1+1=2

Q1 > Q2: possible
Q2 > Q1: possible

relevant constraint subset: {E & ST & F, S & I} ⊆ CON,

where CON is the set comprising
all constraint combinations

constraint ranking: E & ST & F ◦ S & I

T15:

Candidates E & ST & F S & I
⇒ Q1: welche Fuge ∗
⇒ Q2: jeder Pianist ∗

7The sentences (14) and (15) correspond to Pafel’s examples (3.164’) and
(3.165).

8Pafel assumes that wh-phrases are inherently focused (cf. Pafel (1998:98)).
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However, sentences in which the quantifiers share some common
properties relevant for scope require a slight modification to the
definition of CONrel. Since neither candidate would violate a con-
straint derived from (one of) these properties, these constraints
are irrelevant for the competition and must therefore be excluded
from CONrel. Thus, CONrel can be defined as follows: The first
element of CONrel is the local conjunction that involves the con-
straints derived from Q1’s properties minus those Q1 shares with
Q2, and the second element combines the constraints derived from
Q2’s properties minus those shared with Q1. Example (15) serves
as an illustration. While constraint subset (i) does not yield the
correct result (cf. T16(i)), constraint subset (ii), which consists of
the same constraint combinations except that the common prop-
erty F is excluded, makes the correct predictions (cf. T16(ii)).

(15) Welche
[which

Fuge
fugue]acc

hat
has

JEder
[EVery

Pianist
pianist]nom

gespielt?
played

Q1: EX-PRE + ST-L-DB + FOCUS
Q2: SUBJECT + IN-DIS + FOCUS

SV(Q1)=1.5+2−1=2.5
SV(Q2)=1+1−1=1

Q1 > Q2: possible
Q2 > Q1: impossible

relevant constraint subset: (i) {E & ST & F, S & I & F}
(ii) {E & ST, S & I }

constraint ranking: (i) E & ST & F � S & I & F
(ii) E & ST � S & I

T16(i):

Candidates E & ST & F S & I & F
⇒ Q1: welche Fuge

* ⇒ Q2: JEder Pianist
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T16(ii):

Candidates E & ST S & I
⇒ Q1: welche Fuge ∗

Q2: JEder Pianist ∗!

As far as factors with negative weight are concerned, one might
alternatively translate them into negative constraints in order to
avoid configurations where X � X & Y, which contradicts the
definition of local conjunction. The factor FOCUS, for example,
would then translate into the following constraint:

*F: Quantifiers must not be focused.

In fact, we could then also try to replace the factor FOCUS (with
weight −1), which is associated with focused quantifiers, with a
factor *FOCUS with weight 1, which is associated with unfocused
quantifiers. In this way we could generally reinterpret factors with
negative weight such that they would all be assigned positive
weight. With regard to example (14), we would then have the
following configuration, which illustrates that the difference be-
tween the scopal values and therefore the predictions on possible
scope relations remain unaffected by this reinterpretation.

(14’) Welche
[which

Fuge
fugue]acc

hat
has

jeder
[every

Pianist
pianist]nom

in
in

seinem
his

Rep.?
rep.

Q1: EX-PRE + ST-L-DB
Q2: SUBJECT + IN-DIS + *FOCUS

SV(Q1)=1.5+2=3.5
SV(Q2)=1+1+1=3

Q1 > Q2: possible
Q2 > Q1: possible
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relevant constraint subset: {E & ST, S & I & *F}

constraint ranking: E & ST ◦ S & I & *F

T17:

Candidates E & ST S & I & *F
⇒ Q1: welche Fuge ∗
⇒ Q2: jeder Pianist ∗

As far as example (15) is concerned, the factor *FOCUS would
not be involved at all, because both quantifiers in the sentence are
focused. Hence, *F would not belong to the relevant constraint
subset. However, all sentences that contain unfocused quantifiers
(like the examples (1)-(4)) are now associated with the factor *FO-
CUS and therefore with the constraint *F; but as our considera-
tions above have shown, *F will be excluded from CONrel in case
both involved quantifiers are unfocused. Thus the replacement of
F/FOCUS by *F/*FOCUS does not affect our earlier examples.

Finally, there is another configuration in Pafel’s approach that
must be mentioned. If a quantifier is not associated with any prop-
erty that is relevant for scope, it receives the scopal value 0. Thus
it is possible for a sentence containing such a quantifier to be am-
biguous in case the second quantifier Q2 has a scopal value with
–1 < SV(Q2) < 1. Assume that Q2 has the property A, which
translates into the constraint A. As indicated in T18, Q2 fulfils A
in contrast to Q1. Thus we are faced with the situation that Q2

will always win if we do not introduce a further constraint which
is violated by Q2 but not by Q1.

T18:

Candidates A
* Q1 ∗!
⇒ Q2

In order to get the right result, we have to think of an additional
constraint which is satisfied exactly by those quantifiers which
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do not have any properties that influence the quantifier’s scopal
behavior. Such a constraint might look as follows:

NO PROPERTY (N-PR):
Quantifiers must not have properties relevant for scope.

On this assumption, the competition works as follows:

(16) Q1: — SV(Q1)=0
Q2: A −1 < SV(Q2) < 1

Q1 > Q2: possible
Q2 > Q1: possible

relevant constraint subset: {N-PR, A}

constraint ranking: N-PR ◦ A

T19:

Candidates A N-PR
⇒ Q1 ∗
⇒ Q2 ∗

Note that the constraint N-PR must also come into play if a quan-
tifier shares all its properties with the second quantifier of the sen-
tence. This configuration is illustrated in the following example,
where A and B are properties relevant for scope that translate into
the constraints A and B respectively.

(17) Q1: A + B
Q2: A, where |SV(Q1)−SV(Q2)|< 1,

i.e., either quantifier can take wide scope.

As discussed above, the constraint derived from the common prop-
erty A is excluded from CONrel. Thus the relevant constraint sub-
set might be:
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(i) {B}, or
(ii) {B, N-PR}.

For (ii), the constraint ranking is B ◦ N-PR, because we know
from our assumptions in (17) that |weight(B)|< 1. The results we
get for (i) and (ii) are illustrated in T20(i) and T20(ii), which show
that we have to use the second constraint subset.

T20(i):

Candidates B
⇒ Q1

* Q2 ∗!

T20(ii):

Candidates B N-PR
⇒ Q1 ∗
⇒ Q2 ∗

One further situation that can occur in cumulative theories, which
we do not find in Pafel’s approach however, is that the cumulative
occurrence of one and the same constraint violation might change
the outcome of the whole competition. Imagine the following con-
figuration:

T21:

Candidates A B
C1 ∗!

⇒ C2 ∗

T22:

Candidates A B
⇒ C1 ∗

C2 ∗∗!

If it is assumed that A � B, we can account for T21, but not for
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T22, and if we assume that B � A, we get the right prediction
for T22, but not for T21. In the light of the ongoing discussion,
one way out of the dilemma might be to assume that constraint
combinations of the sort X & Y are not only possible in case X 6=
Y, but also if X = Y. The resulting constraint would be a reflexive
local conjunction (cf. also Legendre et al. (1998)), which would
have to be interpreted as follows:

(18) (i) The constraint X & X =: X2 is violated iff X is
violated twice;

(ii) more general:
The constraint Xn is violated iff X is violated n
times.

On these assumptions, T21 and T22 can be accounted for with the
following constraint ranking: B2 � A� B. Since A� B, C2 wins
in T21, and since B2 � A, C1 wins in T22, as illustrated more
precisely in T23.

T23:

Candidates B2 A
⇒ C1 ∗

C2 ∗!

6 Conclusion

As the discussion showed, it seems to be possible to integrate cu-
mulative effects, as they occur, for example, in Pafel’s approach
to quantifier scope, into OT if some special assumptions are ac-
cepted. In order to get effective constraints, it was first of all nec-
essary to introduce (reflexive) local conjunction, which multiplies
the number of constraints enormously and might therefore give
rise to criticism. But as could be shown in the previous section,
the outcome of the competition only hinges on a small subset of
the whole set of constraints.
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A much more severe problem was approached in section 4 and
concerns the transitivity of constraint rankings. Since in cumula-
tive theories, transitivity does not need to hold, we face the prob-
lem that we might have to integrate non-transitive effects into a
transitive order. I think that this is only possible if the idea of
strict or global transitivity, where A ◦ B and B ◦ C necessar-
ily implies A ◦ C, is given up. Thus, I proposed that the occur-
rence of global ties within global ties might only affect some of
the branches. This approach allows on the one hand the integra-
tion of non-transitive effects, but preserves on the other hand at
least locally the transitive order, because each resulting constraint
order remains transitive. Thus, this step is not as radical as it
might seem at first sight. Of course, it has to be pointed out that
global ties in general increase the amount of complexity tremen-
dously; however the number of the resulting constraint rankings is
again reduced somewhat if global ties do not necessarily have to
affect all branches. As far as the formal realization of this relation
is concerned, it can be expressed as interaction between ties and
bracketed hierarchical rankings. This seems to me to be a natural
elaboration of the two basic relations “�” and “◦”, which is to
some extent reminiscent of the interaction between addition and
multiplication.

Finally, the question arose as to how CONrel, the smallest set
of constraints relevant for a competition, can be defined. It is clear
that constraints on which the candidates behave alike can be ex-
cluded and that furthermore simple constraints which are also part
of relevant local conjunctions need not be taken into considera-
tion. (In the latter case, the simple constraints will not be deci-
sive, since the corresponding local conjunctions are higher-ranked.)
Moreover, the cumulative character of the constraints ensures that
(A & X)� or ◦ (B & X)⇔ A� or ◦ B, which allows us to ignore
certain higher-ranked local conjunctions on which the candidates
differ. As far as the integration of Pafel’s approach into OT is con-
cerned, it could therefore be concluded that CONrel contains only
two constraints, namely the constraint combinations derived from
the properties associated with each quantifier.

There are two questions I have not addressed here. First, it
could be asked whether anything would change if CONrel con-
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tained more than two constraints or if more than two candidates
were involved. The second question concerns the representation of
tendencies in OT, as for example the preference for certain read-
ings. One possibility might be that it can somehow be captured
by the number of constraint orders which are affected by certain
ties, since this is exactly how ambiguities predicted by the relation
0 < |SV(Q1)−SV(Q2)| < 1 are characterized. However, whether
this approach would really work would have to be discussed in
more detail.

Appendix

The ranking we finally assumed for the constraints S & I, S, I, and
E was (S & I� S ◦ I) ◦ E, which results in eight constraint orders
if the ties are resolved (cf. diagram (13)). This outcome can be
predicted very easily if we assume the following definition, which
is a generalization of definition (12):

Generalization of definition (12):

(A1 � . . .� An) ◦ B := A1 ◦ B � A2 � A3 � . . .� An

∨ A1 � A2 ◦ B � A3 � . . .� An

∨ . . .
∨ A1 � A2 � A3 � . . .� An ◦ B

Example: (D � A ◦ B) ◦ C

This is the underlying formal relation if A ◦ B, A ◦ C, B ◦ C, D
◦ C, but D � A and D � B. If we apply the definition above, we
get the following result:
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(D � A ◦ B) ◦ C

= (D � A � B) ◦ C ∨ (D � B � A) ◦ C

= D ◦ C � A � B ∨ D ◦ C � B � A
∨ D � A ◦ C � B ∨ D � B ◦ C � A
∨ D � A � B ◦ C ∨ D � B � A ◦ C

= D � C � A � B ∨ D � C � B � A
∨ C � D � A � B ∨ C � D � B � A
∨ D � A � C � B ∨ D � B � C � A

(∨ D � C � A � B ∨ D � C � B � A)
∨ D � A � B � C ∨ D � B � A � C

(∨ D � A � C � B ∨ D � B � C � A)

resulting constraint orders: (i) C � D � A � B
(ii) C � D � B � A
(iii) D � A � B � C
(iv) D � A � C � B
(v) D � B � A � C
(vi) D � B � C � A
(vii) D � C � A � B
(viii) D � C � B � A
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